Charge and heat transfer of the Ti3AlC2 MAX phase

被引:13
|
作者
Vovk, R. V. [1 ,2 ]
Khadzhai, G. Ya [1 ]
Prikhna, T. A. [3 ]
Gevorkyan, E. S. [2 ]
Kislitsa, M. V. [2 ]
Soloviev, A. L. [4 ]
Goulatis, I. L. [1 ]
Chroneos, A. [5 ,6 ]
机构
[1] Kharkov Natl Univ, 4 Svoboda Sq, UA-61022 Kharkov, Ukraine
[2] Ukrainian State Univ Railway Transport, 7 Feuerbach Sq, UA-61050 Kharkov, Ukraine
[3] Natl Acad Sci Ukraine, V Bakul Inst Superhard Mat, 2 Avtozavodska St, UA-04074 Kiev, Ukraine
[4] Natl Acad Sci Ukraine, B Verkin Inst Low Temp Phys & Engn, 47 Nauky Ave, UA-61103 Kharkov, Ukraine
[5] Coventry Univ, Fac Engn Environm & Comp, Priory St, Coventry CV1 5FB, W Midlands, England
[6] Imperial Coll London, Dept Mat, London SW7 2AZ, England
关键词
PHYSICAL-PROPERTIES;
D O I
10.1007/s10854-018-9242-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The electrical and thermal conductivity of the sample containing 97% by volume of the Ti3AlC2 MAX phase and 3% volume TiC was experimentally studied in the temperature range 15-300 K. The temperature dependence of the electrical resistance is approximated by a relation that takes into account the scattering of electrons by phonons and defects. The temperature dependence of the thermal conductivity shows a maximum at about 75 K. In the region of elastic scattering of electrons, the phonon and electron heat transfer are separated. With increasing temperature, the fraction of phonon heat transfer decreases from similar to 90% at low temperatures to similar to 40% near room temperature.
引用
收藏
页码:11478 / 11481
页数:4
相关论文
共 50 条
  • [1] Charge and heat transfer of the Ti3AlC2 MAX phase
    R. V. Vovk
    G. Ya. Khadzhai
    T. A. Prikhna
    E. S. Gevorkyan
    M. V. Kislitsa
    A. L. Soloviev
    I. L. Goulatis
    A. Chroneos
    Journal of Materials Science: Materials in Electronics, 2018, 29 : 11478 - 11481
  • [2] Creep of the Ti3AlC2 MAX-phase ceramics
    Boyko, Yu, I
    Bogdanov, V. V.
    Gevorkyan, E. S.
    Vovk, R. V.
    Korshak, V. F.
    Kolesnichertho, V. A.
    FUNCTIONAL MATERIALS, 2019, 26 (01): : 83 - 87
  • [3] Halogen Etch of Ti3AlC2 MAX Phase for MXene Fabrication
    Jawaid, Ali
    Hassan, Asra
    Neher, Gregory
    Nepal, Dhriti
    Pachter, Ruth
    Kennedy, W. Joshua
    Ramakrishnan, Subramanian
    Vaia, Richard A.
    ACS NANO, 2021, 15 (02) : 2771 - 2777
  • [4] Synthesis of Ti3AlC2 MAX Phase in KBr Protective Melt
    Nagornov, I. A.
    Sapronova, V. M.
    Gorobtsov, Ph. Y.
    Mokrushin, A. S.
    Simonenko, N. P.
    Simonenko, E. P.
    Kuznetsov, N. T.
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2024, 69 (14) : 2184 - 2192
  • [5] Creep and Viscoelasticity of the Ti3AlC2 MAX Phase at Room Temperature
    S. N. Dub
    A. I. Tyurin
    T. A. Prikhna
    Journal of Superhard Materials, 2020, 42 : 294 - 301
  • [6] Mechanical and oxidation behavior of textured Ti2AlC and Ti3AlC2 MAX phase materials
    Li, Xiaoqiang
    Xie, Xi
    Gonzalez-Julian, Jesus
    Malzbender, Juergen
    Yang, Rui
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2020, 40 (15) : 5258 - 5271
  • [7] Creep and Viscoelasticity of the Ti3AlC2 MAX Phase at Room Temperature
    Dub, S. N.
    Tyurin, A., I
    Prikhna, T. A.
    JOURNAL OF SUPERHARD MATERIALS, 2020, 42 (05) : 294 - 301
  • [8] Polydopamine modified Ti3AlC2 3 AlC 2 MAX phase promotes electrochemical metal detection
    Nema, Sneh
    Patel, Monika
    Jaiswal, Shubham
    Dhand, Chetna
    Dwivedi, Neeraj
    SURFACES AND INTERFACES, 2024, 51
  • [9] Features of a nano-twist phase in the nanolayered Ti3AlC2 MAX phase
    Guenole, Julien
    Taupin, Vincent
    Vallet, Maxime
    Yu, Wenbo
    Guitton, Antoine
    SCRIPTA MATERIALIA, 2022, 210
  • [10] Microstructure-oxidation resistance relationship in Ti3AlC2 MAX phase
    Drouelle, E.
    Gauthier-Brunet, V
    Cormier, J.
    Villechaise, P.
    Sallot, P.
    Naimi, E.
    Bernard, F.
    Dubois, S.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 826