On the Difficulty of Learning Power Law Graphical Models

被引:0
作者
Tandon, Rashish [1 ]
Ravikumar, Pradeep [1 ]
机构
[1] Univ Texas Austin, Dept Comp Sci, Austin, TX 78712 USA
来源
2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT) | 2013年
关键词
SELECTION; NETWORKS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A power-law graph is any graph G = (V, E), whose degree distribution follows a power law i.e. the number of vertices in the graph with degree i, yi, is proportional to i(-beta) : yi alpha i(-beta). In this paper, we provide information-theoretic lower bounds on the sample complexity of learning such power-law graphical models i.e. graphical models whose Markov graph obeys the power law. In addition, we briefly revisit some existing state of the art estimators, and explicitly derive their sample complexity for power-law graphs.
引用
收藏
页码:2493 / 2497
页数:5
相关论文
共 19 条
  • [1] A random graph model for power law graphs
    Aiello, W
    Chung, F
    Lu, LY
    [J]. EXPERIMENTAL MATHEMATICS, 2001, 10 (01) : 53 - 66
  • [2] ANANDKUMAR A., 2011, PREPRINT
  • [3] [Anonymous], 2006, CBMS REGIONAL C SERI
  • [4] [Anonymous], 1960, PUBLICATION MATH I H
  • [5] [Anonymous], 2001, RANDOM GRAPHS
  • [6] Emergence of scaling in random networks
    Barabási, AL
    Albert, R
    [J]. SCIENCE, 1999, 286 (5439) : 509 - 512
  • [7] Bresler G, 2008, LECT NOTES COMPUT SC, V5171, P343
  • [8] CHUNG F., 2002, Ann. Comb., V6, P125, DOI [10.1007/PL00012580, DOI 10.1007/PL00012580]
  • [9] Defazio A., 2012, ADV NEURAL INFORM PR, V24
  • [10] Scaling properties of scale-free evolving networks: Continuous approach
    Dorogovtsev, S.N.
    Mendes, J.F.F.
    [J]. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 63 (5 II): : 561251 - 561251