Electrostatic Tuning of a Potassium Channel in Electric Fish

被引:24
作者
Swapna, Immani [1 ,2 ]
Ghezzi, Alfredo [1 ,5 ]
York, Julia M. [2 ]
Markham, Michael R. [4 ]
Halling, D. Brent [1 ]
Lu, Ying [1 ]
Gallant, Jason R. [3 ]
Zakon, Harold H. [1 ,2 ]
机构
[1] Univ Texas Austin, Dept Neurosci, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Integrat Biol, Austin, TX 78712 USA
[3] Michigan State Univ, Dept Integrat Biol, E Lansing, MI 48864 USA
[4] Univ Oklahoma, Dept Biol, Norman, OK 73019 USA
[5] Univ Puerto Rico Rio Piedras, Dept Biol, San Juan, PR 00931 USA
基金
美国国家科学基金会;
关键词
RNA-SEQ DATA; DIFFERENTIAL EXPRESSION; SKELETAL-MUSCLE; MOLECULAR-BASIS; SODIUM-CHANNEL; S3-S4; LINKER; EVOLUTION; GENE; DIVERSIFICATION; COMMUNICATION;
D O I
10.1016/j.cub.2018.05.012
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Molecular variation contributes to the evolution of adaptive phenotypes, though it is often difficult to understand precisely how. The adaptively significant electric organ discharge behavior of weakly electric fish is the direct result of biophysical membrane properties set by ion channels. Here, we describe a voltage-gated potassium-channel gene in African electric fishes that is under positive selection and highly expressed in the electric organ. The channel produced by this gene shortens electric organ action potentials by activating quickly and at hyperpolarized membrane potentials. The source of these properties is a derived patch of negatively charged amino acids in an extracellular loop near the voltage sensor. We demonstrate that this negative patch acts by contributing to the global surface charge rather than by local interactions with specific amino acids in the channel's extracellular face. We suggest a more widespread role for this loop in the evolutionary tuning of voltage-dependent channels.
引用
收藏
页码:2094 / +
页数:14
相关论文
共 50 条
  • [21] Proximate and ultimate causes of signal diversity in the electric fish Gymnotus
    Crampton, W. G. R.
    Rodriguez-Cattaneo, A.
    Lovejoy, N. R.
    Caputi, A. A.
    JOURNAL OF EXPERIMENTAL BIOLOGY, 2013, 216 (13) : 2523 - 2541
  • [22] The isolated voltage sensing domain of the Shaker potassium channel forms a voltage-gated cation channel
    Zhao, Juan
    Blunck, Rikard
    ELIFE, 2016, 5
  • [23] Evidence for Non-neutral Evolution in a Sodium Channel Gene in African Weakly Electric Fish (Campylomormyrus, Mormyridae)
    Paul, Christiane
    Kirschbaum, Frank
    Mamonekene, Victor
    Tiedemann, Ralph
    JOURNAL OF MOLECULAR EVOLUTION, 2016, 83 (1-2) : 61 - 77
  • [24] Chirping response of weakly electric knife fish (Apteronotus leptorhynchus) to low-frequency electric signals and to heterospecific electric fish
    Dunlap, K. D.
    DiBenedictis, B. T.
    Banever, S. R.
    JOURNAL OF EXPERIMENTAL BIOLOGY, 2010, 213 (13) : 2234 - 2242
  • [25] Potassium channel modulation and auditory processing
    Brown, Maile R.
    Kaczmarek, Leonard K.
    HEARING RESEARCH, 2011, 279 (1-2) : 32 - 42
  • [26] REPRODUCTIVE CHARACTER DISPLACEMENT AND SIGNAL ONTOGENY IN A SYMPATRIC ASSEMBLAGE OF ELECTRIC FISH
    Crampton, William G. R.
    Lovejoy, Nathan R.
    Waddell, Joseph C.
    EVOLUTION, 2011, 65 (06) : 1650 - 1666
  • [27] Chirping and asymmetric jamming avoidance responses in the electric fish Distocyclus conirostris
    Petzold, Jacquelyn M.
    Alves-Gomes, Jose A.
    Troy Smith, G.
    JOURNAL OF EXPERIMENTAL BIOLOGY, 2018, 221 (17)
  • [28] Adaptive shift of active electroreception in weakly electric fish for troglobitic life
    Soares, Daphne
    Gallman, Kathryn
    Bichuette, Maria Elina
    Fortune, Eric S.
    FRONTIERS IN ECOLOGY AND EVOLUTION, 2023, 11
  • [29] Transmission mechanisms of fish electric signals
    Fine, Michael L.
    Kier, Lemont B.
    Alvarez, Julio C.
    FISH AND FISHERIES, 2017, 18 (06) : 1176 - 1179
  • [30] Taxonomic revision of the deep channel electric fish genus Sternarchella (Teleostei: Gymnotiformes: Apteronotidae), with descriptions of two new species
    Evans, Kory M.
    Crampton, William G. R.
    Albert, James S.
    NEOTROPICAL ICHTHYOLOGY, 2017, 15 (02)