Semi-Supervised Feature Selection via Insensitive Sparse Regression with Application to Video Semantic Recognition

被引:25
|
作者
Luo, Tingjin [1 ]
Hou, Chenping [1 ]
Nie, Feiping [2 ]
Tao, Hong [1 ]
Yi, Dongyun [1 ]
机构
[1] Natl Univ Def Technol, Coll Sci, Changsha 410073, Hunan, Peoples R China
[2] Northwestern Polytech Univ, Ctr OPT IMagery Anal & Learning OPTIMAL, Xian 710072, Shaanxi, Peoples R China
基金
美国国家科学基金会;
关键词
Dimensionality reduction; semi-supervised feature selection; video semantic recognition; insensitive sparse regression; capped l(2)-l(p)-norm loss; INFORMATION;
D O I
10.1109/TKDE.2018.2810286
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Feature selection plays a significant role in dealing with high-dimensional data to avoid the curse of dimensionality. In many real applications, like video semantic recognition, handling few labeled and large unlabeled data samples from the same population is a recently addressed challenge in feature selection. To solve this problem, we propose a novel semi-supervised feature selection method via insensitive sparse regression (ISR). Specifically, we compute the soft label matrix by the special label propagation, which can predict the labels of the unlabeled data. To guarantee the robustness of ISR to the false labeled instances or outliers, we propose Insensitive Regression Model (IRM) by capped l(2)-l(p)-norm loss. The soft label is imposed as the weights of IRM to fully utilize the label information. Meanwhile, to perform feature selection, we incorporate l(2,q)-norm regularizer with IRM as the structural sparsity constraint when 0 < q <= 1. Moreover, we put forward an effective approach for solving the formulated non-convex optimization problem. We analyze the performance of convergence rigorously and discuss the parameter determination problem. Extensive experimental results on several public data sets verify the effectiveness of our proposed algorithm in comparison with the state-of-art feature selection methods. Finally, we apply our method to video semantic recognition successfully.
引用
收藏
页码:1943 / 1956
页数:14
相关论文
共 50 条
  • [41] Efficient Semi-Supervised Learning and Sparse Structural Learning for Feature Selection of Leukemia Dataset
    Roopa, S. Nithya
    Nagarajan, N.
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2020, 10 (08) : 1815 - 1824
  • [42] Semi-supervised feature selection analysis with structured multi-view sparse regularization
    Shi, Caijuan
    Duan, Changyu
    Gu, Zhibin
    Tian, Qi
    An, Gaoyun
    Zhao, Ruizhen
    NEUROCOMPUTING, 2019, 330 : 412 - 424
  • [43] Semi-supervised Regression with Data Partitioning and Feature Mapping
    Liu, Li-Yan
    Zhang, Jia-Hui
    Min, Fan
    2022 IEEE 9TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2022, : 76 - 85
  • [44] A recursive feature retention method for semi-supervised feature selection
    Qingqing Pang
    Li Zhang
    International Journal of Machine Learning and Cybernetics, 2021, 12 : 2639 - 2657
  • [45] A recursive feature retention method for semi-supervised feature selection
    Pang, Qingqing
    Zhang, Li
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2021, 12 (09) : 2639 - 2657
  • [46] Adaptive Feature Selection and Feature Fusion for Semi-supervised Classification
    Du, Wei
    Phlypo, Ronald
    Adali, Tulay
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2019, 91 (05): : 521 - 537
  • [47] Adaptive Feature Selection and Feature Fusion for Semi-supervised Classification
    Wei Du
    Ronald Phlypo
    Tülay Adalı
    Journal of Signal Processing Systems, 2019, 91 : 521 - 537
  • [48] Feature selection for semi-supervised multi-target regression using genetic algorithm
    Syed, Farrukh Hasan
    Tahir, Muhammad Atif
    Rafi, Muhammad
    Shahab, Mir Danish
    APPLIED INTELLIGENCE, 2021, 51 (12) : 8961 - 8984
  • [49] Feature selection for semi-supervised multi-target regression using genetic algorithm
    Farrukh Hasan Syed
    Muhammad Atif Tahir
    Muhammad Rafi
    Mir Danish Shahab
    Applied Intelligence, 2021, 51 : 8961 - 8984
  • [50] Multimedia annotation via semi-supervised shared-subspace feature selection
    Zeng, Zhiqiang
    Wang, Xiaodong
    Chen, Yuming
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2017, 48 : 386 - 395