Deductive Reasoning and Computing Based on Propositional Logic

被引:0
作者
Luo, Guiming [1 ]
Yin, Chongyuan [1 ]
机构
[1] Tsinghua Univ, Sch Software, Beijing 100084, Peoples R China
来源
2016 IEEE 15TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC) | 2016年
基金
中国国家自然科学基金;
关键词
Propositional logic; satisfiability degree; deductive reasoning;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The satisfiability degree is a new means of describing the extent to which a proposition is satisfied, and employs deterministic logic rather than probabilistic logic or fuzzy logic. The independent formula-pair and the incompatible formula-pair of the propositions are discussed in this paper. Some properties of the satisfiability degree are given with a conditional satisfiability degree. Deductive reasoning methods based on the satisfiability degree are established. The formula reasoning and semantic checking are given by the conditional satisfiability degree. Some potential applications for the satisfiability degree are given.
引用
收藏
页码:294 / 299
页数:6
相关论文
共 15 条
[1]   Fundamentals of a Fuzzy-Logic-Based Generalized Theory of Stability [J].
Aliev, Rafik A. ;
Pedrycz, Witold .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2009, 39 (04) :971-988
[2]  
[Anonymous], 1996, NEW INTRO MODAL LOGI
[3]   Efficient High Order Matching [J].
Chertok, Michael ;
Keller, Yosi .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (12) :2205-2215
[4]  
De Raedt L., 2003, ACM SIGKDD Explorations Newsletter, V5, P31
[5]   Computational Intelligence for Evolving Trading Rules [J].
Ghandar, Adam ;
Michalewicz, Zbigniew ;
Schmidt, Martin ;
To, Thuy-Duong ;
Zurbrugg, Ralf .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2009, 13 (01) :71-86
[6]  
Huth M., 2004, LOGIC COMPUTER SCI M
[7]   MEBN: A language for first-order Bayesian knowledge bases [J].
Laskey, Kathryn Blackmond .
ARTIFICIAL INTELLIGENCE, 2008, 172 (2-3) :140-178
[8]   A Probabilistic Neural-Fuzzy Learning System for Stochastic Modeling [J].
Li, Han-Xiong ;
Liu, Zhi .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2008, 16 (04) :898-908
[9]   Bayesian Clustering of Fuzzy Feature Vectors Using a Quasi-Likelihood Approach [J].
Marttinen, Pekka ;
Tang, Jing ;
De Baets, Bernard ;
Dawyndt, Peter ;
Corander, Jukka .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, 31 (01) :74-85
[10]   PROBABILISTIC LOGIC [J].
NILSSON, NJ .
ARTIFICIAL INTELLIGENCE, 1986, 28 (01) :71-87