Molecular Insights into the Correlation between Microstructure and Thermal Conductivity of Zeolitic Imidazolate Frameworks

被引:18
作者
Cheng, Ruihuan [1 ,2 ]
Li, Wei [1 ]
Wei, Wei [3 ]
Huang, Jun [4 ]
Li, Song [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Dept New Energy Sci & Engn, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, China EU Inst Clean & Renewable Energy, Wuhan 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Chem & Chem Engn, Key Lab Mat Chem Energy Convers & Storage, Minist Educ, Wuhan 430074, Peoples R China
[4] Tsinghua Univ, Dept Engn Mech, Key Lab Thermal Sci & Power Engn, Minist Educ, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
metal-organic frameworks; orientation; heat transfer pathway; alignment tensor; pathway factor; METAL-ORGANIC FRAMEWORKS; DYNAMICS; ADSORPTION; MOF-5; ALGORITHMS;
D O I
10.1021/acsami.0c21220
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The thermal conductivity of metal-organic frameworks (MOFs) imposes significant impacts on the thermal transfer performance of related adsorption systems in engineering applications. However, how the structural properties of MOFs affect their thermal conductivities has yet to be unraveled. In this work, the thermal conductivities of 18 zeolitic imidazolate frameworks (ZIFs) were calculated by equilibrium molecular dynamics (MD) simulations. It was revealed that the thermal conductivities of ZIFs were not directly correlated with the commonly investigated structural properties. Thus, two parameters including alignment tensor (A(i)) and pathway factor (P-f) were proposed to quantitatively evaluate the orientation and distribution of heat transfer pathways within frameworks, which was demonstrated to correlate better with the thermal conductivities of ZIFs. This study provides new insights into the thermal transfer mechanism within framework-based nanoporous materials, which may also facilitate fundamental understanding and guide the rational design of porous crystals with the thermal conductivity of interest.
引用
收藏
页码:14141 / 14149
页数:9
相关论文
共 37 条
[1]   Effect of pore size and shape on the thermal conductivity of metal-organic frameworks [J].
Babaei, Hasan ;
McGaughey, Alan J. H. ;
Wilmer, Christopher E. .
CHEMICAL SCIENCE, 2017, 8 (01) :583-589
[2]   The energy landscapes of zeolitic imidazolate frameworks (ZIFs): towards quantifying the presence of substituents on the imidazole ring [J].
Baburin, Igor A. ;
Leoni, Stefano .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (20) :10152-10154
[3]   Heat Flux for Many-Body Interactions: Corrections to LAMMPS [J].
Boone, Paul ;
Babaei, Hasan ;
Wilmer, Christopher E. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2019, 15 (10) :5579-5587
[4]   Metal-organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations [J].
Chughtai, Adeel H. ;
Ahmad, Nazir ;
Younus, Hussein A. ;
Laypkov, A. ;
Verpoort, Francis .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (19) :6804-6849
[5]   Thermal Conductivity of ZIF-8 Thin-Film under Ambient Gas Pressure [J].
Cui, Boya ;
Audu, Cornelius O. ;
Liao, Yijun ;
Nguyen, SonBinh T. ;
Farha, Omar K. ;
Hupp, Joseph T. ;
Grayson, Matthew .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (34) :28139-28143
[6]   Adsorption-Driven Heat Pumps: The Potential of Metal-Organic Frameworks [J].
de Lange, Martijn F. ;
Verouden, Karlijn J. F. M. ;
Vlugt, Thijs J. H. ;
Gascon, Jorge ;
Kapteijn, Freek .
CHEMICAL REVIEWS, 2015, 115 (22) :12205-12250
[7]   COMPUTER SIMULATION OF LATTICE DYNAMICS OF SOLIDS [J].
DICKEY, JM ;
PASKIN, A .
PHYSICAL REVIEW, 1969, 188 (03) :1407-+
[8]   Thermal conductivity of a perovskite-type metal-organic framework crystal [J].
Gunatilleke, Wilarachchige D. C. B. ;
Wei, Kaya ;
Niu, Zheng ;
Wojtas, Lukasz ;
Nolas, George ;
Ma, Shengqian .
DALTON TRANSACTIONS, 2017, 46 (39) :13342-13344
[9]   Porous metal-organic frameworks for fuel storage [J].
He, Yabing ;
Chen, Fengli ;
Li, Bin ;
Qian, Guodong ;
Zhou, Wei ;
Chen, Banglin .
COORDINATION CHEMISTRY REVIEWS, 2018, 373 :167-198
[10]  
Hockney R.W., 1981, Computer Simulation Using Particles