Software-Based Real-Time Acquisition and Processing of PET Detector Raw Data

被引:18
作者
Goldschmidt, Benjamin [1 ]
Schug, David
Lerche, Christoph W. [2 ]
Salomon, Andre [3 ]
Gebhardt, Pierre [4 ]
Weissler, Bjoern [5 ]
Wehner, Jakob
Dueppenbecker, Peter M.
Kiessling, Fabian
Schulz, Volkmar [5 ]
机构
[1] Rhein Westfal TH Aachen, Dept Phys Mol Imaging Syst, D-52062 Aachen, Germany
[2] Forschungszentrum Julich, Inst Neurosci & Med INM 4, D-52425 Julich, Germany
[3] Philips Res, Dept Oncol Solut, Eindhoven, Netherlands
[4] Kings Coll London, Div Imaging Sci & Biomed Engn, London WC2R 2LS, England
[5] Philips Res, Clin Applicat Res Dept, Eindhoven, Netherlands
基金
英国工程与自然科学研究理事会; 英国惠康基金;
关键词
Data acquisition; parallel processing; positron emission tomography (PET); real time; singles and coincidence processing; SYSTEM; COINCIDENCE; INSERT;
D O I
10.1109/TBME.2015.2456640
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In modern positron emission tomography (PET) readout architectures, the position and energy estimation of scintillation events (singles) and the detection of coincident events (coincidences) are typically carried out on highly integrated, programmable printed circuit boards. The implementation of advanced singles and coincidence processing (SCP) algorithms for these architectures is often limited by the strict constraints of hardware-based data processing. In this paper, we present a software-based data acquisition and processing architecture (DAPA) that offers a high degree of flexibility for advanced SCP algorithms through relaxed real-time constraints and an easily extendible data processing framework. The DAPA is designed to acquire detector raw data from independent (but synchronized) detector modules and process the data for singles and coincidences in real-time using a center-of-gravity (COG)-based, a least-squares (LS)-based, or a maximum-likelihood (ML)-based crystal position and energy estimation approach (CPEEA). To test the DAPA, we adapted it to a preclinical PET detector that outputs detector raw data from 60 independent digital silicon photomultiplier (dSiPM)-based detector stacks and evaluated it with a [F-18]-fluorodeoxyglucose-filled hot-rod phantom. The DAPA is highly reliable with less than 0.1% of all detector raw data lost or corrupted. For high validation thresholds (37.1 +/- 12.8 photons per pixel) of the dSiPM detector tiles, the DAPA is real time capable up to 55 MBq for the COG-based CPEEA, up to 31 MBq for the LS-based CPEEA, and up to 28 MBq for the ML-based CPEEA. Compared to the COG-based CPEEA, the rods in the image reconstruction of the hot-rod phantom are only slightly better separable and less blurred for the LS- and ML-based CPEEA. While the coincidence time resolution (similar to 550 ps) and energy resolution (similar to 12.3%) are comparable for all three CPEEA, the system sensitivity is up to 2.5x higher for the LS- and ML-based CPEEA.
引用
收藏
页码:316 / 327
页数:12
相关论文
共 47 条
[1]   The Clear-PEM electronics system [J].
Albuquerque, Edgar ;
Bento, Pedro ;
Leong, Carlos ;
Goncalves, Fernando ;
Nobre, Joao ;
Rego, Joel ;
Relvas, Paulo ;
Lousa, Pedro ;
Rodrigues, Pedro ;
Teixeira, Isabel C. ;
Teixeira, Joao P. ;
Silva, Luis ;
Silva, M. Medeiros ;
Trindade, Andreia ;
Varela, Joao .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2006, 53 (05) :2704-2711
[2]   Corrected position estimation in PET detector modules with multi-anode PMTs using neural networks [J].
Aliaga, R. J. ;
Martinez, J. D. ;
Gadea, R. ;
Sebastiá, A. ;
Benlloch, J. M. ;
Sanchez, F. ;
Pavon, N. ;
Lerche, Ch. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2006, 53 (03) :776-783
[3]   SCINTILLATION CAMERA [J].
ANGER, HO .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1958, 29 (01) :27-33
[4]   SPADnet: Embedded coincidence in a smart sensor network for PET applications [J].
Bruschini, C. ;
Charbon, E. ;
Veerappan, C. ;
Braga, L. H. C. ;
Massari, N. ;
Perenzoni, M. ;
Gasparini, L. ;
Stoppa, D. ;
Walker, R. ;
Erdogan, A. ;
Henderson, R. K. ;
East, S. ;
Grant, L. ;
Jatekos, B. ;
Ujhelyi, F. ;
Erdei, G. ;
Loerincz, E. ;
Andre, L. ;
Maingault, L. ;
Reboud, V. ;
Verger, L. ;
d'Aillon, E. Gros ;
Major, P. ;
Papp, Z. ;
Nemeth, G. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2014, 734 :122-126
[5]  
Degenhardt C, 2012, IEEE NUCL SCI CONF R, P2820
[6]  
Degenhardt C, 2010, IEEE NUCL SCI CONF R, P1954, DOI 10.1109/NSSMIC.2010.5874115
[7]  
Dewitt D., 2008, P IEEE NUCL SCI S, P5029
[8]  
Düppenbecker PM, 2012, IEEE NUCL SCI CONF R, P3481
[9]   The Hardware and Signal Processing Architecture of LabPET™, a Small Animal APD-Based Digital PET Scanner [J].
Fontaine, Rejean ;
Belanger, Francois ;
Viscogliosi, Nicolas ;
Semmaoui, Hicham ;
Tetrault, Marc-Andre ;
Michaud, Jean-Baptiste ;
Pepin, Catherine ;
Cadorette, Jules ;
Lecomte, Roger .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2009, 56 (01) :3-9
[10]  
Frach T, 2010, IEEE NUCL SCI CONF R, P1722, DOI 10.1109/NSSMIC.2010.5874069