Quasinormal mode approach to modelling light-emission and propagation in nanoplasmonics

被引:100
作者
Ge, Rong-Chun [1 ]
Kristensen, Philip Trost [2 ]
Young, Jeff F. [3 ]
Hughes, Stephen [1 ]
机构
[1] Queens Univ, Dept Phys Engn Phys & Astron, Kingston, ON K7L 3N6, Canada
[2] Tech Univ Denmark, DTU Foton, DK-2800 Lyngby, Denmark
[3] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
nanoplasmonics; quasinormal modes; effective mode volume; Purcell factors; quantum dots; light-matter interactions; Green functions; ELECTROMAGNETIC SCATTERING; COMPLETENESS;
D O I
10.1088/1367-2630/16/11/113048
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We describe a powerful and intuitive theoretical technique for modeling light-matter interactions in classical and quantum nanoplasmonics. Our approach uses a quasinormal mode (QNM) expansion of the photon Green function within a metal nanoresonator of arbitrary shape, together with a Dyson equation, to derive an expression for the spontaneous decay rate and far field propagator from dipole oscillators outside resonators. For a single QNM, at field positions outside the quasi-static coupling regime, we give a closed form solution for the Purcell factor and generalized effective mode volume. We augment this with an analytic expression for the divergent local density of optical states very near the metal surface, which allows us to derive a simple and highly accurate expression for the electric field outside the metal resonator at distances from a few nanometers to infinity. This intuitive formalism provides an enormous simplification over full numerical calculations and fixes several pending problems in QNM theory.
引用
收藏
页数:16
相关论文
共 42 条
[1]   Enhancement and quenching of single-molecule fluorescence [J].
Anger, P ;
Bharadwaj, P ;
Novotny, L .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[2]  
[Anonymous], 2005, MULTIPLE SCATTERING
[3]  
[Anonymous], CAVITY ENHANCED SPEC
[4]   SPONTANEOUS EMISSION IN ABSORBING DIELECTRIC MEDIA [J].
BARNETT, SM ;
HUTTNER, B ;
LOUDON, R .
PHYSICAL REVIEW LETTERS, 1992, 68 (25) :3698-3701
[5]   Nanoassembled Plasmonic-Photonic Hybrid Cavity for Tailored Light-Matter Coupling [J].
Barth, Michael ;
Schietinger, Stefan ;
Fischer, Sabine ;
Becker, Jan ;
Nuesse, Nils ;
Aichele, Thomas ;
Loechel, Bernd ;
Soennichsen, Carsten ;
Benson, Oliver .
NANO LETTERS, 2010, 10 (03) :891-895
[6]   Controlling Spontaneous Emission with Plasmonic Optical Patch Antennas [J].
Belacel, C. ;
Habert, B. ;
Bigourdan, F. ;
Marquier, F. ;
Hugonin, J. -P. ;
de Vasconcellos, S. Michaelis ;
Lafosse, X. ;
Coolen, L. ;
Schwob, C. ;
Javaux, C. ;
Dubertret, B. ;
Greffet, J. -J. ;
Senellart, P. ;
Maitre, A. .
NANO LETTERS, 2013, 13 (04) :1516-1521
[7]   THEORY OF RESONANCES IN THE ELECTROMAGNETIC SCATTERING BY MACROSCOPIC BODIES [J].
BERGMAN, DJ ;
STROUD, D .
PHYSICAL REVIEW B, 1980, 22 (08) :3527-3539
[8]   Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems [J].
Bergman, DJ ;
Stockman, MI .
PHYSICAL REVIEW LETTERS, 2003, 90 (02) :4
[9]   A single-photon transistor using nanoscale surface plasmons [J].
Chang, Darrick E. ;
Sorensen, Anders S. ;
Demler, Eugene A. ;
Lukin, Mikhail D. .
NATURE PHYSICS, 2007, 3 (11) :807-812
[10]  
Chang R. K., 1996, OPTICAL PROCESSES MI