LATTICES WITH MANY BORCHERDS PRODUCTS

被引:13
作者
Bruinier, Jan Hendrik [1 ]
Ehlen, Stephan [1 ]
Freitag, Eberhard [2 ]
机构
[1] Tech Univ Darmstadt, Fachbereich Math, Schlossgartenstr 7, D-64289 Darmstadt, Germany
[2] Heidelberg Univ, Math Inst, Neuenheimer Feld 288, D-69120 Heidelberg, Germany
基金
美国国家科学基金会;
关键词
EISENSTEIN SERIES; ORTHOGONAL GROUPS; REPRESENTATIONS; FORMS;
D O I
10.1090/mcom/3059
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that there are only finitely many isometry classes of even lattices L of signature (2, n) for which the space of cusp forms of weight 1 + n/2 for the Weil representation of the discriminant group of L is trivial. We compute the list of these lattices. They have the property that every Heegner divisor for the orthogonal group of L can be realized as the divisor of a Borcherds product. We obtain similar classification results in greater generality for finite quadratic modules.
引用
收藏
页码:1953 / 1981
页数:29
相关论文
共 28 条
[11]  
Ehlen S., 2014, FINITE QUADRATIC MOD
[12]  
Fischer J., 1987, LECT NOTES MATH, V1253
[13]  
Freitag E., 2014, RIEMANN SURFACES
[14]  
Hagemeier H., 2010, THESIS TU DARMSTADT
[15]  
Kitaoka Y., 1993, CAMBRIDGE TRACTS MAT, V106
[16]   Eisenstein series for SL(2) [J].
Kudla, Stephen S. ;
Yang TongHai .
SCIENCE CHINA-MATHEMATICS, 2010, 53 (09) :2275-2316
[17]  
Nikulin VV., 1979, Izv. Akad. Nauk SSSR Ser. Mat, V43, P111
[18]   IRREDUCIBLE REPRESENTATIONS OF GROUPS SL2(ZP), ESPECIALLY SL2(Z2) .1. [J].
NOBS, A .
COMMENTARII MATHEMATICI HELVETICI, 1976, 51 (04) :465-489
[19]   SOME CONSTRUCTIONS OF MODULAR FORMS FOR THE WEIL REPRESENTATION OF SL2(Z) [J].
Scheithauer, Nils R. .
NAGOYA MATHEMATICAL JOURNAL, 2015, 220 :1-43
[20]   On the classification of automorphic products and generalized Kac-Moody algebras [J].
Scheithauer, NR .
INVENTIONES MATHEMATICAE, 2006, 164 (03) :641-678