Phonon-Like Plasmonic Resonances in a Finite Number of Graphene Nanoribbons

被引:21
作者
Huang, Lei [1 ,4 ]
Liu, Jianqiang [2 ,3 ]
Deng, Hongmei [4 ]
Wu, Shan [1 ]
机构
[1] Fuyang Normal Univ, Dept Phys, Lab Funct Mat & Devices Informat, Fuyang 236032, Anhui, Peoples R China
[2] Jiujiang Univ, Coll Sci, Jiujiang 332005, Jiangxi, Peoples R China
[3] Jiujiang Univ, Key Lab Jiangxi Microstruct Funct Mat, Jiujiang 332005, Jiangxi, Peoples R China
[4] Guangxi Normal Univ, Dept Elect Engn, Lab Optoelect & Opt Commun, Guilin 541000, Guangxi, Peoples R China
来源
ADVANCED OPTICAL MATERIALS | 2018年 / 6卷 / 11期
基金
中国国家自然科学基金;
关键词
graphene ribbons; LC circuits; phonon-like plasmonic resonance; INDUCED TRANSPARENCY; OPTICAL MODULATOR; FIELD ENHANCEMENT; MAGNETIC-FIELD; SURFACE; NANOSTRUCTURES; EXCITATION; GRATINGS; LAUNCHER;
D O I
10.1002/adom.201701378
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Graphene plasmon polaritons excited in individual and periodic nanoribbons microstructures have attracted enormous attention in plasmonics due to their complicated edge effect and excellent tunability. As the distance between neighboring graphene nanoribbons becomes small enough, the strong coupling between the plasmons in individual nanoribbons produces collective oscillations of surface plasmons in a graphene nanoribbons array, the dispersion of which behaves as phonons in a solid, that is, the phonon-like plasmonic resonance mode. In this paper, such a phonon-like plasmonic resonance is theoretically demonstrated in a finite number of graphene nanoribbons deposited on a silicon substrate. Based on the classical LC circuit model, an analytical dispersion relation is obtained to explain the simulated results. Furthermore, an electrically controlled plasmonic switch is proposed with a high performance based on the plasmonic phonon-like resonance theory. The work provides the building blocks to construct graphene plasmonic circuits for future compact optoelectronic devices.
引用
收藏
页数:5
相关论文
共 35 条
[1]   Wide-angle, polarization-independent and dual-band infrared perfect absorber based on L-shaped metamaterial [J].
Bai, Yang ;
Zhao, Li ;
Ju, Dongquan ;
Jiang, Yongyuan ;
Liu, Linhua .
OPTICS EXPRESS, 2015, 23 (07) :8670-8680
[2]   Active Control of Graphene-Based Unidirectional Surface Plasmon Launcher [J].
Bao, Yanjun ;
Zu, Shuai ;
Zhang, Yifei ;
Fang, Zheyu .
ACS PHOTONICS, 2015, 2 (08) :1135-1140
[3]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
[4]   Graphene on meta-surface for super-resolution optical imaging with a sub-10 nm resolution [J].
Cao, Shun ;
Wang, Taisheng ;
Sun, Qiang ;
Hu, Bingliang ;
Levy, Uriel ;
Yu, Weixing .
OPTICS EXPRESS, 2017, 25 (13) :14494-14503
[5]   Strategy for realizing magnetic field enhancement based on diffraction coupling of magnetic plasmon resonances in embedded metamaterials [J].
Chen, Jing ;
Mao, Peng ;
Xu, Rongqing ;
Tang, Chaojun ;
Liu, Yuanjian ;
Wang, Qiugu ;
Zhang, Labao .
OPTICS EXPRESS, 2015, 23 (12) :16238-16245
[6]   Realization of Fanolike Resonance Due to Diffraction Coupling of Localized Surface Plasmon Resonances in Embedded Nanoantenna Arrays [J].
Chen, Jing ;
Xu, Rongqing ;
Mao, Peng ;
Zhang, Yuting ;
Liu, Yuanjian ;
Tang, Chaojun ;
Liu, Jianqiang ;
Chen, Tao .
PLASMONICS, 2015, 10 (02) :341-346
[7]   Graphene Plasmon Waveguiding and Hybridization in Individual and Paired Nanoribbons [J].
Christensen, Johan ;
Manjavacas, Alejandro ;
Thongrattanasiri, Sukosin ;
Koppens, Frank H. L. ;
Javier Garcia de Abajo, F. .
ACS NANO, 2012, 6 (01) :431-440
[8]  
Crawford F. S. F. S., 2007, WAVE BERKELY PHYS CO
[9]   Edge-reflection phase directed plasmonic resonances on graphene nano-structures [J].
Du, Luping ;
Tang, Dingyuan ;
Yuan, Xiaocong .
OPTICS EXPRESS, 2014, 22 (19) :22689-22698
[10]   Surface Plasmon Polariton Graphene Photodetectors [J].
Echtermeyer, T. J. ;
Milana, S. ;
Sassi, U. ;
Eiden, A. ;
Wu, M. ;
Lidorikis, E. ;
Ferrari, A. C. .
NANO LETTERS, 2016, 16 (01) :8-20