Microstructural response of He+ irradiated FeCoNiCrTi0.2 high-entropy alloy

被引:31
作者
Chen, Da [1 ]
Tong, Y. [1 ,2 ]
Wang, J. [1 ,2 ]
Han, B. [1 ,2 ]
Zhao, Y. L. [1 ]
He, F. [1 ]
Kai, J. J. [1 ,2 ,3 ]
机构
[1] City Univ Hong Kong, Dept Mech & Biomed Engn, Hong Kong, Hong Kong, Peoples R China
[2] City Univ Hong Kong, Ctr Adv Nucl Safety & Sustainable Dev, Hong Kong, Hong Kong, Peoples R China
[3] Natl Tsing Hua Univ, Dept Engn & Syst Sci, Hsinchu 30013, Taiwan
关键词
High-entropy alloy; Helium bubbles; Faulted dislocation loops; Stacking fault energy; SOLID-SOLUTION ALLOYS; RADIATION-INDUCED SEGREGATION; STACKING-FAULT ENERGY; TEMPERATURE-DEPENDENCE; HELIUM ACCUMULATION; BEHAVIOR; METALS; IMPLANTATION; MECHANISMS; STABILITY;
D O I
10.1016/j.jnucmat.2018.08.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the He+ irradiated FeCoNiCrTi0.2 high-entropy alloy (HEA), radiation-induced defects including helium bubbles and faulted dislocation loops were characterized by transmission electron microscopy. Compared with other face-centered cubic alloys irradiated in similar conditions, we found that the faulted loops in the FeCoNiCrTi0.2 HEA have a much large size, whereas the perfect loops were rarely detected. Our results reveal that the faulted-type defect structure is more energetically favorable in the FeCoNiCrTi0.2 HEA, whereas the transformation of the faulted to perfect dislocation loops was suppressed. For the underlying mechanism, we propose that the low stacking fault energy can stabilize the faulted planar defects during irradiation. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:187 / 192
页数:6
相关论文
共 36 条
[1]  
Busby T. R. A. J. T., 1997, P 8 INT S ENV DEGR M, P758
[2]   Helium accumulation and bubble formation in FeCoNiCr alloy under high fluence He+ implantation [J].
Chen, Da ;
Tong, Y. ;
Li, H. ;
Wang, J. ;
Zhao, Y. L. ;
Hu, Alice ;
Kai, J. J. .
JOURNAL OF NUCLEAR MATERIALS, 2018, 501 :208-216
[3]   IRRADIATION ASSISTED STRESS-CORROSION CRACKING OF CONTROLLED PURITY 304L STAINLESS-STEELS [J].
COOKSON, JM ;
CARTER, RD ;
DAMCOTT, DL ;
ATZMON, M ;
WAS, GS .
JOURNAL OF NUCLEAR MATERIALS, 1993, 202 (1-2) :104-121
[4]  
Gan T. A. J., 1997, P MAT RES SOC, P445
[5]   A fracture-resistant high-entropy alloy for cryogenic applications [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Catoor, Dhiraj ;
Chang, Edwin H. ;
George, Easo P. ;
Ritchie, Robert O. .
SCIENCE, 2014, 345 (6201) :1153-1158
[6]   Composition evolution of gamma prime nanoparticles in the Ti-doped CoFeCrNi high entropy alloy [J].
Han, Bin ;
Wei, Jie ;
Tong, Yang ;
Chen, Da ;
Zhao, Yilu ;
Wang, Jing ;
He, Feng ;
Yang, Tao ;
Zhao, Can ;
Shimizu, Yasuo ;
Inoue, Koji ;
Nagai, Yasuyoshi ;
Hu, Alice ;
Liu, Chain Tsuan ;
Kai, Ji Jung .
SCRIPTA MATERIALIA, 2018, 148 :42-46
[7]   A precipitation-hardened high-entropy alloy with outstanding tensile properties [J].
He, J. Y. ;
Wang, H. ;
Huang, H. L. ;
Xu, X. D. ;
Chen, M. W. ;
Wu, Y. ;
Liu, X. J. ;
Nieh, T. G. ;
An, K. ;
Lu, Z. P. .
ACTA MATERIALIA, 2016, 102 :187-196
[8]   Mechanisms of radiation-induced segregation in CrFeCoNi-based single-phase concentrated solid solution alloys [J].
He, Mo-Rigen ;
Wang, Shuai ;
Shi, Shi ;
Jin, Ke ;
Bei, Hongbin ;
Yasuda, Kazuhiro ;
Matsumura, Syo ;
Higashida, Kenji ;
Robertson, Ian M. .
ACTA MATERIALIA, 2017, 126 :182-193
[9]  
Hull D., 2011, Introduction to Dislocations
[10]  
Jenkins M.L., 2000, CHARACTERISATION RAD