Ground-state energy and excitation spectrum of the Lieb-Liniger model: accurate analytical results and conjectures about the exact solution

被引:23
作者
Lang, Guillaume [1 ,2 ]
Hekking, Frank [1 ,2 ]
Minguzzi, Anna [1 ,2 ]
机构
[1] Univ Grenoble Alpes, LPMMC, F-38000 Grenoble, France
[2] LPMMC, CNRS, F-38000 Grenoble, France
来源
SCIPOST PHYSICS | 2017年 / 3卷 / 01期
关键词
DIMENSIONAL BOSE-GAS; CIRCULAR PLATE CONDENSER; TONKS-GIRARDEAU GAS; MOMENTUM DISTRIBUTION; QUANTUM; BOSONS; SYSTEMS; EXPANSION; DISTRIBUTIONS; REALIZATION;
D O I
10.21468/SciPostPhys.3.1.003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the ground-state properties and excitation spectrum of the Lieb-Liniger model, i.e. the one-dimensional Bose gas with repulsive contact interactions. We solve the Bethe-Ansatz equations in the thermodynamic limit by using an analytic method based on a series expansion on orthogonal polynomials developed in [1] and push the expansion to an unprecedented order. By a careful analysis of the mathematical structure of the series expansion, we make a conjecture for the analytic exact result at zero temperature and show that the partially resummed expressions thereby obtained compete with accurate numerical calculations. This allows us to evaluate the density of quasi-momenta, the ground-state energy, the local two-body correlation function and Tan's contact. Then, we study the two branches of the excitation spectrum. Using a general analysis of their properties and symmetries, we obtain novel analytical expressions at arbitrary interaction strength which are found to be extremely accurate in a wide range of intermediate to strong interactions.
引用
收藏
页数:45
相关论文
共 192 条
  • [1] Andrei N., ARXIV160608911V1
  • [2] [Anonymous], 2008, HDB INTEGRAL EQUAION, DOI DOI 10.1201/9781420010558
  • [3] Probing Three-Body Correlations in a Quantum Gas Using the Measurement of the Third Moment of Density Fluctuations
    Armijo, J.
    Jacqmin, T.
    Kheruntsyan, K. V.
    Bouchoule, I.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (23)
  • [4] Lieb's soliton-like excitations in harmonic traps
    Astrakharchik, G. E.
    Pitaevskii, L. P.
    [J]. EPL, 2013, 102 (03)
  • [5] Low-dimensional weakly interacting Bose gases: Nonuniversal equations of state
    Astrakharchik, G. E.
    Boronat, J.
    Kurbakov, I. L.
    Lozovik, Yu. E.
    Mazzanti, F.
    [J]. PHYSICAL REVIEW A, 2010, 81 (01):
  • [6] Beyond the Tonks-Girardeau gas: Strongly correlated regime in quasi-one-dimensional Bose gases
    Astrakharchik, GE
    Boronat, J
    Casulleras, J
    Giorgini, S
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (19)
  • [7] Motion of a heavy impurity through a Bose-Einstein condensate
    Astrakharchik, GE
    Pitaevskii, LP
    [J]. PHYSICAL REVIEW A, 2004, 70 (01): : 013608 - 1
  • [8] Correlation functions and momentum distribution of one-dimensional Bose systems
    Astrakharchik, GE
    Giorgini, S
    [J]. PHYSICAL REVIEW A, 2003, 68 (03): : 4
  • [9] Atas Y. Y., ARXIV161204593V2
  • [10] THE ASYMPTOTIC SOLUTION OF SOME INTEGRAL-EQUATIONS
    ATKINSON, C
    LEPPINGTON, FG
    [J]. IMA JOURNAL OF APPLIED MATHEMATICS, 1983, 31 (03) : 169 - 182