Numerical analysis on polymer electrolyte membrane fuel cell performance enhancement with novel selective-patterned gas diffusion layers

被引:6
|
作者
Son, Jonghyun [1 ]
Kim, Young-Beom [1 ,2 ]
机构
[1] Hanyang Univ, Dept Mech Convergence Engn, 222 Wangsimni Ro, Seoul 04763, South Korea
[2] Hanyang Univ, Inst Nanosci & Technol, 222 Wangsimni Ro, Seoul, South Korea
关键词
Selective-patterned gas diffusion layer; Conventional channel types; Polymer electrolyte membrane fuel cell; Flow field modi fication; Computational fluid dynamics; SERPENTINE FLOW-FIELD; CHANNELS; SIMULATION; TRANSPORT; PEMFCS; PERMEABILITY; PARAMETERS; BLOCKAGES; PARALLEL; FOAM;
D O I
10.1016/j.renene.2022.06.008
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
To improve the performance of polymer membrane electrolyte fuel cells (PEMFCs), many studies dealing with flow fields, including those related to the channel and gas diffusion layer (GDL), have been conducted. Especially, the GDL, which is an important component that determines the PEMFC performance, has been used as a diffusion media which covers all reaction sites between the channel and catalyst layer. The common rectangular shape of the GDL enables the diffusion of the reactant under the rib. However, it results in the deterioration of mass transport under the channel. In this study, GDLs that have a shape like a rib are devised, which enable the diffusion under the rib and better mass transport under the channel. Then, the selective-patterned GDL are applied to PEMFCs having different cathode channel types of serpentine, parallel, and interdigitated channels. The PEMFCs having serpentine and parallel channels with selective-patterned GDLs show better performance under all voltage conditions. The performance of serpentine and parallel channel PEMFC was improved 6.0% and 6.7% respectively at 0.5V voltage condition. The interdigitated channel PEMFC having a selective-patterned GDL does not show the remarkable improvement obtained for other channel types using a selective-patterned GDL and the improvement was only 1.6% at 0.5V voltage condition. However, for the volume power density, all analysis results of cases having a selective-patterned GDL are better than the cases with a normal GDL and the improvement degreed of volume power density of serpentine, parallel and interdigitated channel PEMFC was 14.0, 14.7 and 9.2% respectively at 0.5V voltage condition. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页码:455 / 465
页数:11
相关论文
共 50 条
  • [1] A numerical study on the performance of polymer electrolyte membrane fuel cells due to the variation in gas diffusion layer permeability
    Baek, Seung Man
    Koh, Soo Gon
    Kim, Kwang Nam
    Kang, Jung Ho
    Nam, Jin Hyun
    Kim, Charn-Jung
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2011, 25 (02) : 457 - 467
  • [2] Numerical analysis of the effect of anisotropic gas diffusion layer permeability on polymer electrolyte membrane fuel cell performance with various channel types
    Son, Jonghyun
    Um, Sukkee
    Kim, Young-Beom
    FUEL, 2021, 289
  • [3] Accelerated Degradation of Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers
    Liu, Hang
    George, Michael G.
    Banerjee, Rupak
    Ge, Nan
    Lee, Jongmin
    Muirhead, Daniel
    Shrestha, Pranay
    Chevalier, Stephane
    Hinebaugh, James
    Zeis, Roswitha
    Messerschmidt, Matthias
    Scholta, Joachim
    Bazylak, Aimy
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (07) : F704 - F713
  • [4] Effective diffusivity of polymer electrolyte fuel cell gas diffusion layers: An overview and numerical study
    Ismail, M. S.
    Ingham, D. B.
    Hughes, K. J.
    Ma, L.
    Pourkashanian, M.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (34) : 10994 - 11010
  • [5] Characterisation of mechanical behaviour and coupled electrical properties of polymer electrolyte membrane fuel cell gas diffusion layers
    Kleemann, J.
    Finsterwalder, F.
    Tillmetz, W.
    JOURNAL OF POWER SOURCES, 2009, 190 (01) : 92 - 102
  • [6] Performance enhancement of polymer electrolyte membrane fuel cell by employing line-patterned Nafion membrane
    Bae, Jin Woo
    Cho, Yong-Hun
    Sung, Yung-Eun
    Shin, Kyusoon
    Jho, Jae Young
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2012, 18 (03) : 876 - 879
  • [7] Numerical study of gas purge in polymer electrolyte membrane fuel cell
    Ding, Jing
    Mu, Yu-Tong
    Zhai, Shuang
    Tao, Wen-Quan
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 103 : 744 - 752
  • [8] Polymer electrolyte membrane fuel cell flow field designs and approaches for performance enhancement
    Celik, Erman
    Karagoz, Irfan
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2020, 234 (08) : 1189 - 1214
  • [9] Performance enhancement of polymer electrolyte membrane fuel cells with a hybrid wettability gas diffusion layer
    Wang, Yulin
    Liu, Tao
    He, Wei
    Wang, Shixue
    Liu, Shengchun
    Yue, Like
    Li, Hua
    ENERGY CONVERSION AND MANAGEMENT, 2020, 223 (223)
  • [10] Heterogeneous through-plane distributions of polytetrafluoroethylene in polymer electrolyte membrane fuel cell gas diffusion layers
    Rofaiel, A.
    Ellis, J. S.
    Challa, P. R.
    Bazylak, A.
    JOURNAL OF POWER SOURCES, 2012, 201 : 219 - 225