Active and dynamic information fusion for facial expression understanding from image sequences

被引:269
作者
Zhang, YM [1 ]
Ji, Q [1 ]
机构
[1] Rensselaer Polytech Inst, Dept Elect Comp & Syst Engn, Troy, NY 12180 USA
关键词
facial expression analysis; dynamic Bayesian networks; visual information fusion; active sensing;
D O I
10.1109/TPAMI.2005.93
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper explores the use of multisensory information fusion technique with Dynamic Bayesian networks (DBNs) for modeling and understanding the temporal behaviors of facial expressions in image sequences. Our facial feature detection and tracking based on active IR illumination provides reliable visual information under variable lighting and head motion. Our approach to facial expression recognition lies in the proposed dynamic and probabilistic framework based on combining DBNs with Ekman's Facial Action Coding System (FACS) for systematically modeling the dynamic and stochastic behaviors of spontaneous facial expressions. The framework not only provides a coherent and unified hierarchical probabilistic framework to represent spatial and temporal information related to facial expressions, but also allows us to actively select the most informative visual cues from the available information sources to minimize the ambiguity in recognition. The recognition of facial expressions is accomplished by fusing not only from the current visual observations, but also from the previous visual evidences. Consequently, the recognition becomes more robust and accurate through explicitly modeling temporal behavior of facial expression. In this paper, we present the theoretical foundation underlying the proposed probabilistic and dynamic framework for facial expression modeling and understanding. Experimental results demonstrate that our approach can accurately and robustly recognize spontaneous facial expressions from an image sequence under different conditions.
引用
收藏
页码:699 / 714
页数:16
相关论文
共 51 条
[1]  
[Anonymous], ADV NEURAL INFORM PR
[2]  
[Anonymous], THESIS U ILLINOIS UR
[3]  
[Anonymous], J ROBOT AUTON SYST
[4]  
Bartlett MS, 1996, ADV NEUR IN, V8, P823
[5]  
BARTLETT MS, 2001, MPLABTR200108 U CAL
[7]   Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection [J].
Belhumeur, PN ;
Hespanha, JP ;
Kriegman, DJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (07) :711-720
[8]   Recognizing facial expressions in image sequences using local parameterized models of image motion [J].
Black, MJ ;
Yacoob, Y .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1997, 25 (01) :23-48
[9]   Feature-point tracking by optical flow discriminates subtle differences in facial expression [J].
Cohn, JF ;
Zlochower, AJ ;
Lien, JJ ;
Kanade, T .
AUTOMATIC FACE AND GESTURE RECOGNITION - THIRD IEEE INTERNATIONAL CONFERENCE PROCEEDINGS, 1998, :396-401
[10]  
COLMENAREZ A, 1999, P INT C COMP VIS PAT