On the Cauchy Problem for the Homogeneous Boltzmann-Nordheim Equation for Bosons: Local Existence, Uniqueness and Creation of Moments

被引:21
作者
Briant, Marc [1 ]
Einav, Amit [2 ]
机构
[1] Brown Univ, Div Appl Math, 182 George St,Box F, Providence, RI 02192 USA
[2] Univ Cambridge DPMMS, Ctr Math Sci, Wilberforce Rd, Cambridge CB3 0WA, England
基金
英国工程与自然科学研究理事会;
关键词
Boltzmann-Nordheim equation; Kinetic model for bosons; Bose-Einstein condensation; Subcritical solutions; Local Cauchy problem; BOSE-EINSTEIN PARTICLES; CONDENSATION;
D O I
10.1007/s10955-016-1517-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Boltzmann-Nordheim equation is a modification of the Boltzmann equation, based on physical considerations, that describes the dynamics of the distribution of particles in a quantum gas composed of bosons or fermions. In this work we investigate the Cauchy theory of the spatially homogeneous Boltzmann-Nordheim equation for bosons, in dimension d >= 3. We show existence and uniqueness locally in time for any initial data in L-infinity (1+vertical bar v vertical bar(s)) with finite mass and energy, for a suitable s, as well as the instantaneous creation of moments of all order.
引用
收藏
页码:1108 / 1156
页数:49
相关论文
共 30 条
[1]  
[Anonymous], 1957, PUBL SCI I MITTAG LE
[2]  
ARKERYD L, 1972, ARCH RATION MECH AN, V45, P17
[3]   L-INFINITY ESTIMATES FOR THE SPACE HOMOGENEOUS BOLTZMANN-EQUATION [J].
ARKERYD, L .
JOURNAL OF STATISTICAL PHYSICS, 1983, 31 (02) :347-361
[4]  
ARKERYD L, 1972, ARCH RATION MECH AN, V45, P1
[5]   On the theory of Botzmann's integrodifferential equation [J].
Carleman, T .
ACTA MATHEMATICA, 1933, 60 (01) :91-146
[6]  
Cercignani C., 1988, BOLTZMANN EQUATION I
[7]  
Cercignani Carlo, 1994, Applied Mathematical Sciences, V106
[8]  
Chapman S., 1990, Thermal Conduction and Diffusion in Gases
[9]   Finite time blow-up and condensation for the bosonic Nordheim equation [J].
Escobedo, M. ;
Velazquez, J. J. L. .
INVENTIONES MATHEMATICAE, 2015, 200 (03) :761-847
[10]   On the Blow Up and Condensation of Supercritical Solutions of the Nordheim Equation for Bosons [J].
Escobedo, M. ;
Velazquez, J. J. L. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 330 (01) :331-365