MINIMAL INEQUALITIES FOR AN INFINITE RELAXATION OF INTEGER PROGRAMS

被引:37
作者
Basu, Amitabh [1 ]
Conforti, Michele [2 ]
Cornuejols, Gerard [3 ,4 ]
Zambelli, Giacomo [2 ]
机构
[1] Carnegie Mellon Univ, Tepper Sch Business, Pittsburgh, PA 15213 USA
[2] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35121 Padua, Italy
[3] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[4] Univ Aix Marseille, Fac Sci Luminy, F-13288 Marseille, France
关键词
integer programming; cutting planes; maximal lattice-free convex sets;
D O I
10.1137/090756375
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that maximal S-free convex sets are polyhedra when S is the set of integral points in some rational polyhedron of R-n. This result extends a theorem of Lovasz characterizing maximal lattice-free convex sets. Our theorem has implications in integer programming. In particular, we show that maximal S-free convex sets are in one-to-one correspondence with minimal inequalities.
引用
收藏
页码:158 / 168
页数:11
相关论文
共 11 条
[1]  
Andersen K, 2007, LECT NOTES COMPUT SC, V4513, P1
[2]   INTERSECTION CUTS - NEW TYPE OF CUTTING PLANES FOR INTEGER PROGRAMMING [J].
BALAS, E .
OPERATIONS RESEARCH, 1971, 19 (01) :19-+
[3]  
Barvinok A, 2002, Graduate Studies in Mathematics, V54
[4]  
BASU A, 2009, MAXIMAL LATTIC UNPUB
[5]  
BASU A, 2009, CONVEX SETS MI UNPUB
[6]   Minimal Valid Inequalities for Integer Constraints [J].
Borozan, Valentin ;
Cornuejols, Gerard .
MATHEMATICS OF OPERATIONS RESEARCH, 2009, 34 (03) :538-546
[7]  
DEY SS, 2009, CONSTRAINED IN UNPUB
[8]  
JOHNSON EL, 1981, MATH PROGRAM STUD, V14, P112, DOI 10.1007/BFb0120925
[9]  
LOVASZ L, 1989, MATH PROGRAMMING REC, P177
[10]  
Schrijver Alexander, 1986, Theory of Linear and Integer Programming