GREENHOUSE EXTRACTION FROM HIGH-RESOLUTION REMOTE SENSING IMAGERY WITH IMPROVED RANDOM FOREST

被引:7
|
作者
Feng, Tianjing [1 ]
Ma, Hairong [2 ]
Cheng, Xinwen [1 ]
机构
[1] China Univ Geosci, Fac Geog & Informat Engn, Wuhan, Peoples R China
[2] Hubei Acad Agr Sci, Wuhan, Peoples R China
来源
IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2020年
关键词
Random Forest; maximum voting entropy; generalized Euclidean distance; high-resolution remote sensing imagery; greenhouse identification;
D O I
10.1109/IGARSS39084.2020.9324147
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The timely and accurate acquisition of greenhouses and their distribution from remote sensing imagery is valuable for Chinese authorities seeking to optimize regional agricultural management and mitigate environmental pollution. However, greenhouses are uncommon background objects in such imagery, making them a minority class that traditional random forest (RF) methods struggle to classify accurately in unbalanced data sets. Herein, we propose and test an improved RF sample selection method. Equal sample numbers were randomly selected from minority and majority classes to build an original training set for RF modeling. High-quality samples were then automatically added to the training set according to the voting entropy and generalized Euclidean distance, which are based on sample characteristic parameters. The results demonstrate that our improved RF yields better results in identifying greenhouses than the traditional RF. In addition, our method can be utilized to identify other minority-class objects from remote sensing imagery.
引用
收藏
页码:553 / 556
页数:4
相关论文
共 50 条
  • [1] Building Polygon Extraction from High-Resolution Remote Sensing Imagery Using Knowledge Distillation
    Xu, Haiyan
    Xu, Gang
    Sun, Geng
    Chen, Jie
    Hao, Jun
    Mourtzis, Dimitris
    APPLIED SCIENCES-BASEL, 2023, 13 (16):
  • [2] Urban villages extraction from high-resolution remote sensing imagery based on landscape semantic metrics
    Zhang T.
    Ding L.
    Shi F.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2021, 50 (01): : 97 - 104
  • [3] On the Effectiveness of Weakly Supervised Semantic Segmentation for Building Extraction From High-Resolution Remote Sensing Imagery
    Li, Zhenshi
    Zhang, Xueliang
    Xiao, Pengfeng
    Zheng, Zixian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 3266 - 3281
  • [4] Building area extraction from the high spatial resolution remote sensing imagery
    Wenzao Shi
    Zhengyuan Mao
    Jinqing Liu
    Earth Science Informatics, 2019, 12 : 19 - 29
  • [5] Building area extraction from the high spatial resolution remote sensing imagery
    Shi, Wenzao
    Mao, Zhengyuan
    Liu, Jinqing
    EARTH SCIENCE INFORMATICS, 2019, 12 (01) : 19 - 29
  • [6] Study on hierarchical building extraction from high resolution remote sensing imagery
    You Y.
    Wang S.
    Wang B.
    Ma Y.
    Shen M.
    Liu W.
    Xiao L.
    Yaogan Xuebao/Journal of Remote Sensing, 2019, 23 (01): : 125 - 136
  • [7] Road extraction from high-resolution remote sensing imagery based on local adaptive directional template match
    Sun, Ke
    Zhang, Jun-Ping
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2015, 23 : 509 - 515
  • [8] DE-Net: Deep Encoding Network for Building Extraction from High-Resolution Remote Sensing Imagery
    Liu, Hao
    Luo, Jiancheng
    Huang, Bo
    Hu, Xiaodong
    Sun, Yingwei
    Yang, Yingpin
    Xu, Nan
    Zhou, Nan
    REMOTE SENSING, 2019, 11 (20)
  • [9] Classification of High-Resolution SAR imagery by Random Forest Classifier
    Ye, Xi
    Zhang, Hong
    Wang, Chao
    Wu, Fan
    Zhang, Bo
    Tang, Yixian
    CONFERENCE PROCEEDINGS OF 2013 ASIA-PACIFIC CONFERENCE ON SYNTHETIC APERTURE RADAR (APSAR), 2013, : 312 - 316
  • [10] Semi-Supervised Building Detection from High-Resolution Remote Sensing Imagery
    Zheng, Daoyuan
    Kang, Jianing
    Wu, Kaishun
    Feng, Yuting
    Guo, Han
    Zheng, Xiaoyun
    Li, Shengwen
    Fang, Fang
    SUSTAINABILITY, 2023, 15 (15)