Performance of electrostatic spray-deposited vanadium pentoxide in lithium secondary cells

被引:25
作者
Kim, YT
Gopukumar, S
Kim, KB
Cho, BW
机构
[1] Yonsei Univ, Div Mat Sci & Engn, Seodaemun Gu, Seoul 120749, South Korea
[2] Korea Inst Sci & Technol, Eco & Nano Res Ctr, Seoul 136791, South Korea
关键词
electrostatic spray deposition; vanadium pentoxide; secondary lithium battery; cycling; intercalation;
D O I
10.1016/S0378-7753(03)00006-5
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A vanadium pentoxide (V2O5) thin-film is deposited on to a platinum substrate using an electrostatic spray deposition (ESD) technique and its performance in a secondary lithium cell is reported for the first time. The deposited thin-film is characterized in terms of structure and surface morphology using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The XRD studies reveals that the structure of the thin V2O5 film is amorphous. The crystallinity increases with rise in the annealing temperature from 200 to 275 degreesC and is composed of orthorhombic V2O5 crystals. Scanning electron micrographs indicate the near-porous nature of the annealed thin-film. The electrochemical behavior of the thin-film of vanadate is investigated by means of cyclic voltammetry (CV) and galvanostatic discharge-charge cycling using a lithium metal anode in the voltage range 2.0-4.0 V (versus Li metal) in 1 M LiClO4/propylene carbonate (PC) as electrolyte. Good cycleability and high capacity (270 mAh g(-1)) is achieved at a current rate of 0.2C by annealing the thin-film at 275 degreesC. Furthermore, the capacity remains stable even after 25 cycles; excellent capacity retention is observed even at the 1 C rate (260 mAh g(-1)). It is concluded that ESD is an excellent and cheap technique for fabricating thin-films of vanadate for use as cathodes in secondary lithium cells. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:110 / 117
页数:8
相关论文
共 37 条
[1]  
*ASTM, 1962, 9387 ASTM
[2]   Morphology control of thin LiCoO2 films fabricated using the electrostatic spray deposition (ESD) technique [J].
Chen, CH ;
Kelder, EM ;
vanderPut, PJJM ;
Schoonman, J .
JOURNAL OF MATERIALS CHEMISTRY, 1996, 6 (05) :765-771
[3]   Unique porous LiCoO2 thin layers prepared by electrostatic spray deposition [J].
Chen, CH ;
Kelder, EM ;
Schoonman, J .
JOURNAL OF MATERIALS SCIENCE, 1996, 31 (20) :5437-5442
[4]   Electrostatic spray deposition of thin layers of cathode materials for lithium battery [J].
Chen, CH ;
Kelder, EM ;
Jak, MJG ;
Schoonman, J .
SOLID STATE IONICS, 1996, 86-8 :1301-1306
[5]   Investigation of structural fatigue in spinel electrodes using in situ laser probe beam deflection technique [J].
Chung, KY ;
Kim, KB .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (01) :A79-A85
[6]   CRYSTAL-CHEMISTRY OF ELECTROCHEMICALLY INSERTED LIXV2O5 [J].
COCCIANTELLI, JM ;
DOUMERC, JP ;
POUCHARD, M ;
BROUSSELY, M ;
LABAT, J .
JOURNAL OF POWER SOURCES, 1991, 34 (02) :103-111
[7]   ON THE DELTA-]GAMMA IRREVERSIBLE TRANSFORMATION IN LI//V2O5 SECONDARY BATTERIES [J].
COCCIANTELLI, JM ;
MENETRIER, M ;
DELMAS, C ;
DOUMERC, JP ;
POUCHARD, M ;
BROUSSELY, M ;
LABAT, J .
SOLID STATE IONICS, 1995, 78 (1-2) :143-150
[8]   Low-temperature synthesized LiV3O8 as a cathode material for rechargeable lithium batteries [J].
Dai, JX ;
Li, SFY ;
Gao, ZQ ;
Siow, KS .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (09) :3057-3062
[9]   OMEGA-LIXV2O5 - A NEW ELECTRODE MATERIAL FOR RECHARGEABLE LITHIUM BATTERIES [J].
DELMAS, C ;
BRETHES, S ;
MENETRIER, M .
JOURNAL OF POWER SOURCES, 1991, 34 (02) :113-118
[10]   METAL-OXIDE CATHODE MATERIALS FOR ELECTROCHEMICAL ENERGY-STORAGE - A REVIEW [J].
DESILVESTRO, J ;
HAAS, O .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (01) :C5-C22