Existence of steady symmetric vortex pairs on a planar domain with an obstacle

被引:26
作者
Badiani, TV [1 ]
机构
[1] Univ Bath, Sch Math Sci, Bath BA2 7AY, Avon, England
关键词
D O I
10.1017/S0305004197002041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove an existence theorem for a steady planar flow of an ideal fluid past an obstacle, containing a bounded symmetric vortex pair and approaching a uniform flow at infinity. The vorticity is a rearrangement of a prescribed function. The stream function psi for the flow satisfies the equation -Delta psi = phi o psi in a region bounded by the line of symmetry, where phi is an increasing function that is unknown a priori. The result is obtained from a variational principle in which a functional related. to the kinetic energy is maximised over all flows whose vorticity fields are rearrangements of a prescribed function.
引用
收藏
页码:365 / 384
页数:20
相关论文
共 11 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]  
BADIANI TV, 1995, THESIS U BATH
[3]  
Benjamin T. B., 1976, LECT NOTES MATH, V503, P8
[4]   REARRANGEMENTS OF FUNCTIONS, MAXIMIZATION OF CONVEX FUNCTIONALS, AND VORTEX RINGS [J].
BURTON, GR .
MATHEMATISCHE ANNALEN, 1987, 276 (02) :225-253
[5]   VARIATIONAL-PROBLEMS ON CLASSES OF REARRANGEMENTS AND MULTIPLE CONFIGURATIONS FOR STEADY VORTICES [J].
BURTON, GR .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1989, 6 (04) :295-319
[7]  
Ekeland I., 1976, CONVEX ANAL VARIATIO
[8]   REARRANGEMENTS IN STEADY VORTEX FLOWS WITH CIRCULATION [J].
ELCRAT, AR ;
MILLER, KG .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 111 (04) :1051-1055
[9]  
LIEB EH, 1977, STUD APPL MATH, V57, P93
[10]  
TURKINGTON B, 1983, COMMUN PART DIFF EQ, V8, P999, DOI 10.1080/03605308308820293