Tuning of Extended Kalman Filters for Sensorless Motion Control with Induction Motor

被引:0
作者
Alonge, Francesco [1 ]
D'Ippolito, Filippo [1 ]
Fagiolini, Adriano [1 ]
Garraffa, Giovanni [1 ]
Raimondi, Francesco Maria [1 ]
Sferlazza, Antonino [1 ]
机构
[1] Univ Palermo, Dept Engn, I-90128 Palermo, Italy
来源
2019 AEIT INTERNATIONAL CONFERENCE OF ELECTRICAL AND ELECTRONIC TECHNOLOGIES FOR AUTOMOTIVE (AEIT AUTOMOTIVE) | 2019年
关键词
Extended Kalman filter; genetic algorithm; sensorless control; electrical traction; SPEED ESTIMATION; OXIDE;
D O I
10.23919/eeta.2019.8804540
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work deals with the tuning of an Extended Kalman Filter for sensorless control of induction motors for electrical traction in automotive. Assuming that the parameters of the induction motor-load model are known, Genetic Algorithms are used for obtaining the system noise covariance matrix, considering the measurement noise covariance matrix equal to the identity matrix. It is shown that only stator currents have to be acquired for reaching this objective, which is easy to accomplish using Hall-effect transducers. In fact, the Genetic Algorithm minimizes, with respect to the system covariance matrix, a suitable measure of the displacement between the stator currents experimentally acquired and those estimated by the Kalman filter. The proposed method is validated by experiments.
引用
收藏
页数:6
相关论文
共 37 条
[1]   Robust Control for High Performance Induction Motor Drives Based on Partial State-Feedback Linearization [J].
Accetta, Angelo ;
Alonge, Francesco ;
Cirrincione, Maurizio ;
D'Ippolito, Filippo ;
Pucci, Marcello ;
Rabbeni, Roberto ;
Sferlazza, Antonino .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2019, 55 (01) :490-503
[2]   Feedback Linearizing Control of Induction Motor Considering Magnetic Saturation Effects [J].
Accetta, Angelo ;
Alonge, Francesco ;
Cirrincione, Maurizio ;
Pucci, Marcello ;
Sferlazza, Antonino .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2016, 52 (06) :4843-4854
[3]   Fast alignment using rotation vector and adaptive Kalman filter [J].
Ahn, HS ;
Won, CH .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2006, 42 (01) :70-83
[4]  
Akesson B. M., 2007, 17 EUR S COMP PROC E
[5]   A Nonlinear Observer for Rotor Flux Estimation of Induction Motor Considering the Estimated Magnetization Characteristic [J].
Alonge, Francesco ;
Cirrincione, Maurizio ;
Pucci, Marcello ;
Sferlazza, Antonino .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2017, 53 (06) :5952-5965
[6]   Active Disturbance Rejection Control of Linear Induction Motor [J].
Alonge, Francesco ;
Cirrincione, Maurizio ;
D'Ippolito, Filippo ;
Pucci, Marcello ;
Sferlazza, Antonino .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2017, 53 (05) :4460-4471
[7]   Robust Active Disturbance Rejection Control of Induction Motor Systems Based on Additional Sliding-Mode Component [J].
Alonge, Francesco ;
Cirrincione, Maurizio ;
D'Ippolito, Filippo ;
Pucci, Marcello ;
Sferlazza, Antonino .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (07) :5608-5621
[8]   Convergence Analysis of Extended Kalman Filter for Sensorless Control of Induction Motor [J].
Alonge, Francesco ;
Cangemi, Tommaso ;
D'Ippolito, Filippo ;
Fagiolini, Adriano ;
Sferlazza, Antonino .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015, 62 (04) :2341-2352
[9]   Extended complex Kalman filter for sensorless control of an induction motor [J].
Alonge, Francesco ;
D'Ippolito, Filippo ;
Fagiolini, Adriano ;
Sferlazza, Antonino .
CONTROL ENGINEERING PRACTICE, 2014, 27 :1-10
[10]  
[Anonymous], 2011, Kalman Filtering: Theory and Practice Using MATLAB