High Energy Density Asymmetric Supercapacitor Based on NiOOH/Ni3S2/3D Graphene and Fe3O4/Graphene Composite Electrodes

被引:183
作者
Lin, Tsung-Wu [1 ]
Dai, Chao-Shuan [1 ]
Hung, Kuan-Chung [1 ]
机构
[1] Tunghai Univ, Dept Chem, Taichung 40704, Taiwan
关键词
FACILE SYNTHESIS; HYDROUS RUO2; PERFORMANCE; OXIDE; CARBON; NANOPARTICLES; NANOSHEETS; HYBRID; NI(OH)(2); NETWORKS;
D O I
10.1038/srep07274
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The application of the composite of Ni3S2 nanoparticles and 3D graphene as a novel cathode material for supercapacitors is systematically investigated in this study. It is found that the electrode capacitance increases by up to 111% after the composite electrode is activated by the consecutive cyclic voltammetry scanning in 1 M KOH. Due to the synergistic effect, the capacitance and the diffusion coefficient of electrolyte ions of the activated composite electrode are ca. 3.7 and 6.5 times higher than those of the Ni3S2 electrode, respectively. Furthermore, the activated composite electrode exhibits an ultrahigh specific capacitance of 3296 F/g and great cycling stability at a current density of 16 A/g. To obtain the reasonable matching of cathode/anode electrodes, the composite of Fe3O4 nanoparticles and chemically reduced graphene oxide (Fe3O4/rGO) is synthesized as the anode material. The Fe3O4/rGO electrode exhibits the specific capacitance of 661 F/g at 1 A/g and excellent rate capability. More importantly, an asymmetric supercapacitor fabricated by two different composite electrodes can be operated reversibly between 0 and 1.6 V and obtain a high specific capacitance of 233 F/g at 5 mV/s, which delivers a maximum energy density of 82.5 Wh/kg at a power density of 930 W/kg.
引用
收藏
页数:10
相关论文
共 59 条
[1]   X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems [J].
Biesinger, Mark C. ;
Payne, Brad P. ;
Lau, Leo W. M. ;
Gerson, Andrea ;
Smart, Roger St. C. .
SURFACE AND INTERFACE ANALYSIS, 2009, 41 (04) :324-332
[2]   ELECTROCHEMICAL AND XPS STUDIES OF THE SURFACE OXIDATION OF SYNTHETIC HEAZLEWOODITE (NI3S2) [J].
BUCKLEY, AN ;
WOODS, R .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1991, 21 (07) :575-582
[3]   Morphology of Template-Grown Polyaniline Nanowires and Its Effect on the Electrochemical Capacitance of Nanowire Arrays [J].
Cao, Yanyan ;
Mallouk, Thomas E. .
CHEMISTRY OF MATERIALS, 2008, 20 (16) :5260-5265
[4]   Electrochemically synthesized graphene/polypyrrole composites and their use in supercapacitor [J].
Chang, Hao-Hsiang ;
Chang, Chih-Kai ;
Tsai, Yu-Chen ;
Liao, Chien-Shiun .
CARBON, 2012, 50 (06) :2331-2336
[5]  
Chen ZP, 2011, NAT MATER, V10, P424, DOI [10.1038/NMAT3001, 10.1038/nmat3001]
[6]   Influence of component content on the capacitance of magnetite/reduced graphene oxide composite [J].
Cheng, J. P. ;
Shou, Q. L. ;
Wu, J. S. ;
Lin, F. ;
Dravid, Vinayak P. ;
Zhang, X. B. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2013, 698 :1-8
[7]   Raman spectroscopy of nickel sulfide Ni3S2 [J].
Cheng, Zhe ;
Abernathy, Harry ;
Liu, Meilin .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (49) :17997-18000
[8]   Cathodic Deposition of Flaky Nickel Sulfide Nanostructure as an Electroactive Material for High-Performance Supercapacitors [J].
Chou, Shu-Wei ;
Lin, Jeng-Yu .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (04) :D178-D182
[9]   Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors [J].
Cottineau, T ;
Toupin, M ;
Delahaye, T ;
Brousse, T ;
Bélanger, D .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2006, 82 (04) :599-606
[10]   Hierarchically Structured Ni3S2/Carbon Nanotube Composites as High Performance Cathode Materials for Asymmetric Supercapacitors [J].
Dai, Chao-Shuan ;
Chien, Pei-Yi ;
Lin, Jeng-Yu ;
Chou, Shu-Wei ;
Wu, Wen-Kai ;
Li, Ping-Hsuan ;
Wu, Kuan-Yi ;
Lin, Tsung-Wu .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (22) :12168-12174