Active and Repressed Chromatin Domains Exhibit Distinct Nucleosome Segregation during DNA Replication

被引:112
作者
Escobar, Thelma M. [1 ,2 ]
Oksuz, Ozgur [1 ,2 ,3 ]
Saldana-Meyer, Ricardo [1 ,2 ]
Descostes, Nicolas [1 ,2 ,4 ]
Bonasio, Roberto [1 ,2 ,5 ]
Reinberg, Danny [1 ,2 ]
机构
[1] NYU, Langone Med Ctr, Howard Hughes Med Inst, New York, NY 10016 USA
[2] NYU, Langone Med Ctr, New York, NY 10016 USA
[3] Whitehead Inst Biomed Res, 455 Main St, Cambridge, MA 02142 USA
[4] EMBL Rome, Via Ramarini 32, I-00015 Monterotondo, Italy
[5] Univ Penn, Perelman Sch Med, Dept Cell & Dev Biol, Epigenet Inst, Philadelphia, PA 19104 USA
关键词
DEOXYRIBONUCLEIC-ACID; PROTEIN; TRANSCRIPTION; PROXIMITY; CELLS; FORKS; LOCI;
D O I
10.1016/j.cell.2019.10.009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Chromatin domains and their associated structures must be faithfully inherited through cellular division to maintain cellular identity. However, accessing the localized strategies preserving chromatin domain inheritance, specifically the transfer of parental, pre-existing nucleosomes with their associated post-translational modifications (PTMs) during DNA replication, is challenging in living cells. We devised an inducible, proximity-dependent labeling system to irreversibly mark replication-dependent H3.1 and H3.2 histone-containing nucleosomes at desired loci in mouse embryonic stem cells so that their fate after DNA replication could be followed. Strikingly, repressed chromatin domains are preserved through local re-deposition of parental nucleosomes. In contrast, nucleosomes decorating active chromatin domains do not exhibit such preservation. Notably, altering cell fate leads to an adjustment of the positional inheritance of parental nucleosomes that reflects the corresponding changes in chromatin structure. These findings point to important mechanisms that contribute to parental nucleosome segregation to preserve cellular identity.
引用
收藏
页码:953 / +
页数:22
相关论文
共 62 条
  • [1] The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update
    Afgan, Enis
    Baker, Dannon
    Batut, Berenice
    van den Beek, Marius
    Bouvier, Dave
    Cech, Martin
    Chilton, John
    Clements, Dave
    Coraor, Nate
    Gruening, Bjoern A.
    Guerler, Aysam
    Hillman-Jackson, Jennifer
    Hiltemann, Saskia
    Jalili, Vahid
    Rasche, Helena
    Soranzo, Nicola
    Goecks, Jeremy
    Taylor, James
    Nekrutenko, Anton
    Blankenberg, Daniel
    [J]. NUCLEIC ACIDS RESEARCH, 2018, 46 (W1) : W537 - W544
  • [2] Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components
    Alabert, Constance
    Bukowski-Wills, Jimi-Carlo
    Lee, Sung-Bau
    Kustatscher, Georg
    Nakamura, Kyosuke
    Alves, Flavia de Lima
    Menard, Patrice
    Mejlvang, Jakob
    Rappsilber, Juri
    Groth, Anja
    [J]. NATURE CELL BIOLOGY, 2014, 16 (03) : 281 - +
  • [3] Chromatin replication and epigenome maintenance
    Alabert, Constance
    Groth, Anja
    [J]. NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2012, 13 (03) : 153 - 167
  • [4] Ten principles of heterochromatin formation and function
    Allshire, Robin C.
    Madhani, Hiten D.
    [J]. NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2018, 19 (04) : 229 - 244
  • [5] PCGF3/5-PRC1 initiates Polycomb recruitment in X chromosome inactivation
    Almeida, Mafalda
    Pintacuda, Greta
    Masui, Osamu
    Koseki, Yoko
    Gdula, Michal
    Cerase, Andrea
    Brown, David
    Mould, Arne
    Innocent, Cassandravictoria
    Nakayama, Manabu
    Schermelleh, Lothar
    Nesterova, Tatyana B.
    Koseki, Haruhiko
    Brockdorff, Neil
    [J]. SCIENCE, 2017, 356 (6342) : 1081 - +
  • [6] Assembling chromatin: The long and winding road
    Annunziato, Anthony T.
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2012, 1819 (3-4): : 196 - 210
  • [7] A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules
    Banaszynski, Laura A.
    Chen, Lin-chun
    Maynard-Smith, Lystranne A.
    Ooi, A. G. Lisa
    Wandless, Thomas J.
    [J]. CELL, 2006, 126 (05) : 995 - 1004
  • [8] Efficient method to generate single-copy transgenic mice by site-specific integration in embryonic stem cells
    Beard, C
    Hochedlinger, K
    Plath, K
    Wutz, A
    Jaenisch, R
    [J]. GENESIS, 2006, 44 (01) : 23 - 28
  • [9] Polycomb complexes repress developmental regulators in murine embryonic stem cells
    Boyer, LA
    Plath, K
    Zeitlinger, J
    Brambrink, T
    Medeiros, LA
    Lee, TI
    Levine, SS
    Wernig, M
    Tajonar, A
    Ray, MK
    Bell, GW
    Otte, AP
    Vidal, M
    Gifford, DK
    Young, RA
    Jaenisch, R
    [J]. NATURE, 2006, 441 (7091) : 349 - 353
  • [10] Epigenetic inheritance: histone bookmarks across generations
    Campos, Eric I.
    Stafford, James M.
    Reinberg, Danny
    [J]. TRENDS IN CELL BIOLOGY, 2014, 24 (11) : 664 - 674