Transition metal nitrides for electrochemical energy applications

被引:815
作者
Wang, Hao [1 ]
Li, Jianmin [2 ]
Li, Ke [3 ,4 ]
Lin, Yanping [5 ,6 ]
Chen, Jianmei [7 ]
Gao, Lijun [5 ,6 ]
Nicolosi, Valeria [3 ,4 ]
Xiao, Xu [2 ]
Lee, Jong-Min [1 ]
机构
[1] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 637459, Singapore
[2] Univ Elect Sci & Technol China, Sch Elect Sci & Engn, State Key Lab Elect Thin Film & Integrated Device, Chengdu 610054, Sichuan, Peoples R China
[3] Trinity Coll Dublin, Sch Chem, Ctr Res Adapt Nanostruct & Nanodevices CRANN, Dublin 2, Ireland
[4] Trinity Coll Dublin, Adv Mat Bioengn Res Ctr AMBER, Dublin 2, Ireland
[5] Soochow Univ, Soochow Inst Energy & Mat Innovat, Coll Energy, Suzhou 215006, Peoples R China
[6] Soochow Univ, Key Lab Adv Carbon Mat & Wearable Energy Technol, Suzhou 215006, Peoples R China
[7] Soochow Univ, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Inst Funct Nano & Soft Mat FUNSOM, Suzhou 215123, Peoples R China
基金
欧洲研究理事会; 中国国家自然科学基金;
关键词
ELECTROCATALYTIC HYDROGEN EVOLUTION; SALT-TEMPLATED SYNTHESIS; HIGH-PERFORMANCE ANODE; AT-VANADIUM NITRIDE; IN-SITU FORMATION; PSEUDOCAPACITIVE CHARGE STORAGE; DOPED GRAPHENE NANOCOMPOSITES; OXYGEN REDUCTION REACTION; CARBON HOLLOW SPHERES; MOLYBDENUM NITRIDE;
D O I
10.1039/d0cs00415d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Transition metal nitrides (TMNs), by virtue of their unique electronic structure, high electrical conductivity, superior chemical stability, and excellent mechanical robustness, have triggered tremendous research interest over the past decade, and showed great potential for electrochemical energy conversion and storage. However, bulk TMNs usually suffer from limited numbers of active sites and sluggish ionic kinetics, and eventually ordinary electrochemical performance. Designing nanostructured TMNs with tailored morphology and good dispersity has proved an effective strategy to address these issues, which provides a larger specific surface area, more abundant active sites, and shorter ion and mass transport distances over the bulk counterparts. Herein, the most up-to-date progress on TMN-based nanomaterials is comprehensively reviewed, focusing on geometric-structure design, electronic-structure engineering, and applications in electrochemical energy conversion and storage, including electrocatalysis, supercapacitors, and rechargeable batteries. Finally, we outline the future challenges of TMN-based nanomaterials and their possible research directions beyond electrochemical energy applications.
引用
收藏
页码:1354 / 1390
页数:37
相关论文
共 333 条
[111]   Titanium nitride hollow nanospheres with strong lithium polysulfide chemisorption as sulfur hosts for advanced lithium-sulfur batteries [J].
Li, Chuanchuan ;
Shi, Jingjing ;
Zhu, Lin ;
Zhao, Yingyue ;
Lu, Jun ;
Xu, Liqiang .
NANO RESEARCH, 2018, 11 (08) :4302-4312
[112]   Plasma Transforming Ni(OH)2 Nanosheets into Porous Nickel Nitride Sheets for Alkaline Hydrogen Evolution [J].
Li, Guoling ;
Wu, Xiuqi ;
Guo, Heng ;
Guo, Yanru ;
Chen, Hui ;
Wu, Yong ;
Zheng, Jie ;
Li, Xingguo .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (05) :5951-5957
[113]   Anion and cation substitution in transition-metal oxides nanosheets for high-performance hybrid supercapacitors [J].
Li, Jinghua ;
Liu, Zaichun ;
Zhang, Qiaobao ;
Cheng, Yong ;
Zhao, Bote ;
Dai, Shuge ;
Wu, Hong-Hui ;
Zhang, Kaili ;
Ding, Dong ;
Wu, Yuping ;
Liu, Meilin ;
Wang, Ming-Sheng .
NANO ENERGY, 2019, 57 :22-33
[114]   All-pseudocapacitive asymmetric MXene-carbon-conducting polymer supercapacitors [J].
Li, Ke ;
Wang, Xuehang ;
Wang, Xiaofeng ;
Liang, Meiying ;
Nicolosi, Valeria ;
Xu, Yuxi ;
Gogotsi, Yury .
NANO ENERGY, 2020, 75
[115]   3D MXene Architectures for Efficient Energy Storage and Conversion [J].
Li, Ke ;
Liang, Meiying ;
Wang, Hao ;
Wang, Xuehang ;
Huang, Yanshan ;
Coelho, Joao ;
Pinilla, Sergio ;
Zhang, Yonglai ;
Qi, Fangwei ;
Nicolosi, Valeria ;
Xu, Yuxi .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (47)
[116]   An Ultrafast Conducting Polymer@MXene Positive Electrode with High Volumetric Capacitance for Advanced Asymmetric Supercapacitors [J].
Li, Ke ;
Wang, Xuehang ;
Li, Shuo ;
Urbankowski, Patrick ;
Li, Jianmin ;
Xu, Yuxi ;
Gogotsi, Yury .
SMALL, 2020, 16 (04)
[117]   A three-dimensional graphene framework-enabled high-performance stretchable asymmetric supercapacitor [J].
Li, Ke ;
Huang, Yanshan ;
Liu, Jingjing ;
Sarfraz, Mansoor ;
Agboola, Phillips O. ;
Shakir, Imran ;
Xu, Yuxi .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (04) :1802-1808
[118]   Integration of ultrathin graphene/polyaniline composite nanosheets with a robust 3D graphene framework for highly flexible all-solid-state supercapacitors with superior energy density and exceptional cycling stability [J].
Li, Ke ;
Liu, Jingjing ;
Huang, Yanshan ;
Bu, Fanxing ;
Xu, Yuxi .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (11) :5466-5474
[119]   Spatially confined synthesis of vanadium nitride nanodots intercalated carbon nanosheets with ultrahigh volumetric capacitance and long life for flexible supercapacitors [J].
Li, Qingwei ;
Chen, Ye ;
Zhang, Jiabao ;
Tian, Weifeng ;
Wang, Lei ;
Ren, Zhiguo ;
Ren, Xiaochuan ;
Li, Xingxing ;
Gao, Biao ;
Peng, Xiang ;
Chu, Paul K. ;
Huo, Kaifu .
NANO ENERGY, 2018, 51 :128-136
[120]   All Hierarchical Core-Shell Heterostructures as Novel Binder-Free Electrode Materials for Ultrahigh-Energy-Density Wearable Asymmetric Supercapacitors [J].
Li, Qiulong ;
Zhang, Qichong ;
Sun, Juan ;
Liu, Chenglong ;
Guo, Jiabin ;
He, Bing ;
Zhou, Zhenyu ;
Man, Ping ;
Li, Chaowei ;
Xie, Liyan ;
Yao, Yagang .
ADVANCED SCIENCE, 2019, 6 (02)