Realizations of 3-Lie algebras

被引:34
作者
Bai, Ruipu [1 ]
Bai, Chengming [2 ,3 ]
Wang, Jinxiu [1 ]
机构
[1] Hebei Univ, Coll Math & Comp, Baoding 071002, Peoples R China
[2] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1063/1.3436555
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
3-Lie algebras have close relationships with many important fields in mathematics and mathematical physics. In this paper, we provide a construction of 3-Lie algebras in terms of Lie algebras and certain linear functions. Moreover, with the construction from gamma-matrices and two-dimensional extensions of metric Lie algebras, all the complex 3-Lie algebras in dimension <= 5 are obtained along this approach. As a special case, we study the structure of the 3-Lie algebras constructed from the general linear Lie algebras with trace forms and prove that they are semisimple and local. (C) 2010 American Institute of Physics. [doi : 10.1063/1.3436555]
引用
收藏
页数:12
相关论文
共 23 条
[1]  
Awata H, 2001, J HIGH ENERGY PHYS
[2]   Gauge symmetry and supersymmetry of multiple M2-branes [J].
Bagger, Jonathan ;
Lambert, Neil .
PHYSICAL REVIEW D, 2008, 77 (06)
[3]   The strong semi-simple n-Lie algebras [J].
Bai, RP ;
Meng, DJ .
COMMUNICATIONS IN ALGEBRA, 2003, 31 (11) :5331-5341
[4]   3-Lie algebras with an ideal N [J].
Bai, Rui-pu ;
Shen, Cai-hong ;
Zhang, Yao-zhong .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (5-7) :673-700
[5]   The classification of six-dimensional 4-Lie algebras [J].
Bai, Ruipu ;
Song, Guojie .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (03)
[6]   On skew-symmetric maps on Lie algebras [J].
Chebotar, MA ;
Ke, WF .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2003, 133 :1273-1281
[7]   Lorentzian Lie 3-algebras and their Bagger-Lambert moduli space [J].
de Medeiros, Paul ;
Figueroa-O'Farrill, Jose ;
Mendez-Escobar, Elena .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (07)
[8]   Plucker-type relations for orthogonal planes [J].
Figueroa-O'Farrill, J ;
Papadopoulos, G .
JOURNAL OF GEOMETRY AND PHYSICS, 2004, 49 (3-4) :294-331
[9]   Lorentzian Lie n-algebras [J].
Figueroa-O'Farrill, Jose .
JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (11)
[10]  
FILIPPOV VT, 1985, SIBERIAN MATH J+, V26, P879