Comparative performance on photovoltaic model parameter identification via bio-inspired algorithms

被引:88
作者
Ma, Jieming [1 ]
Bi, Ziqiang [1 ]
Ting, Tiew On [2 ]
Hao, Shiyuan [3 ]
Hao, Wanjun [1 ]
机构
[1] Suzhou Univ Sci & Technol, Sch Elect & Informat Engn, 1 Ke Rui Rd, Suzhou 215009, Peoples R China
[2] Xian Jiaotong Liverpool Univ, Dept Elect & Elect Engn, Sci Bldg,111 Renai Rd, Suzhou 215123, Peoples R China
[3] E China Univ Sci & Technol, Sch Informat Sci & Engn, Shanghai 201424, Peoples R China
基金
中国国家自然科学基金;
关键词
Parameter estimation; Modeling; Optimization methods; Photovoltaic cells; DOUBLE-DIODE MODEL; SOLAR-CELLS; EXTRACTION; OPTIMIZATION;
D O I
10.1016/j.solener.2016.03.033
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Photovoltaic (PV) models are usually composed by nonlinear exponential functions, where several unknown parameters must be identified from a set of experimental measurements. Owing to the ability to handle nonlinear functions regardless of the derivatives information, bio-inspired algorithms for parameter identification have gained much attention. In this work, six bio-inspired optimization algorithms, i.e. genetic algorithm, differential evolution, particle swarm optimization, bacteria foraging algorithm, artificial bee colony, and cuckoo search are compared statistically by testing over single-diode models to evaluate their performance in terms of accuracy and stability under uniform solar irradiance and various environmental conditions. Various parameter settings of these algorithms are used in the study. Results indicate that cuckoo search algorithm is more robust and precise among these bio-inspired optimization algorithms. In addition, this paper shows that bio-inspected algorithms are capable of improving the existing PV models by using optimized parameters. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:606 / 616
页数:11
相关论文
共 34 条
[1]   A modified Artificial Bee Colony algorithm for real-parameter optimization [J].
Akay, Bahriye ;
Karaboga, Dervis .
INFORMATION SCIENCES, 2012, 192 :120-142
[2]   Flower Pollination Algorithm based solar PV parameter estimation [J].
Alam, D. F. ;
Yousri, D. A. ;
Eteiba, M. B. .
ENERGY CONVERSION AND MANAGEMENT, 2015, 101 :410-422
[3]   Optimal extraction of solar cell parameters using pattern search [J].
AlHajri, M. F. ;
El-Naggar, K. M. ;
AlRashidi, M. R. ;
Al-Othman, A. K. .
RENEWABLE ENERGY, 2012, 44 :238-245
[4]  
[Anonymous], P 19 EUR PHOT SOL EN
[5]   Determination of photovoltaic modules parameters at different operating conditions using a novel bird mating optimizer approach [J].
Askarzadeh, Alireza ;
Coelho, Leandro dos Santos .
ENERGY CONVERSION AND MANAGEMENT, 2015, 89 :608-614
[6]   ANALYTICAL METHODS FOR THE EXTRACTION OF SOLAR-CELL SINGLE-DIODE AND DOUBLE-DIODE MODEL PARAMETERS FROM IV CHARACTERISTICS [J].
CHAN, DSH ;
PHANG, JCH .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1987, 34 (02) :286-293
[7]   Identification of Photovoltaic Source Models [J].
Chatterjee, Abir ;
Keyhani, Ali ;
Kapoor, Dhruv .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2011, 26 (03) :883-889
[8]  
da Costa Wagner Teixeira, 2010, 2010 IEEE International Conference on Industrial Technology (ICIT 2010), P931, DOI 10.1109/ICIT.2010.5472557
[9]   Selecting a suitable model for characterizing photovoltaic devices [J].
de Blas, MA ;
Torres, JL ;
Prieto, E ;
García, A .
RENEWABLE ENERGY, 2002, 25 (03) :371-380
[10]   Improvement and validation of a model for photovoltaic array performance [J].
De Soto, W ;
Klein, SA ;
Beckman, WA .
SOLAR ENERGY, 2006, 80 (01) :78-88