Removing bias from LiDAR-based estimates of canopy height: Accounting for the effects of pulse density and footprint size

被引:80
作者
Roussel, Jean-Romain [1 ]
Caspersen, John [2 ]
Beland, Martin [3 ]
Thomas, Sean [2 ]
Achim, Alexis [1 ]
机构
[1] Univ Laval, partement Sci bois & foret, Ctr Rech Mat renouvelables, Pavillon Gene H. Kruger,2425 rue Terrasse, Quebec City, PQ G1V 0A6, Canada
[2] Univ Toronto, Fac Forestry, Toronto, ON, Canada
[3] Univ Laval, Dept Geomat Sci, Pavillon Louis Jacques Casault,1055 Ave Seminaire, Quebec City, PQ G1V 0A6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
LiDAR; Canopy height; LiDAR metrics; Pulse density; Footprint size; Forest inventory; Stand structure; WAVE-FORM LIDAR; AIRBORNE LIDAR; POINT DENSITY; STEM VOLUME; TREE EXTRACTION; FOREST CARBON; PLOT SIZE; INTENSITY; VARIABLES; BIOMASS;
D O I
10.1016/j.rse.2017.05.032
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Airborne laser scanning (LiDAR) is used in forest inventories to quantify stand structure with three dimensional point clouds. However, the structure of point clouds depends not only on stand structure, but also on the LiDAR instrument, its settings, and the pattern of flight. The resulting variation between and within datasets (particularly variation in pulse density and footprint size) can induce spurious variation in LiDAR metrics such as maximum height (h(max)) and mean height of the canopy surface model (C-mean). In this study, we first compare two LiDAR datasets acquired with different parameters, and observe that h(max) and C-mean are 56 cm and 1.0 m higher, respectively, when calculated using the high-density dataset with a small footprint. Then, we present a model that explains the observed bias using probability theory, and allows us to recompute the metrics as if the density of pulses were infinite and the size of the two footprints were equivalent. The model is our first step in developing methods for correcting various LiDAR metrics that are used for area-based prediction of stand structure. Such methods may be particularly useful for monitoring forest growth over time, given that acquisition parameters often change between inventories. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 52 条
[1]   A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods [J].
Andersen, Hans-Erik ;
Reutebuch, Stephen E. ;
McGaughey, Robert J. .
CANADIAN JOURNAL OF REMOTE SENSING, 2006, 32 (05) :355-366
[2]   Horizontal resolution and data density effects on remotely sensed LIDAR-based DEM [J].
Anderson, Eric S. ;
Thompson, James A. ;
Crouse, David A. ;
Austin, Rob E. .
GEODERMA, 2006, 132 (3-4) :406-415
[3]   CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change [J].
Anderson-Teixeira, Kristina J. ;
Davies, Stuart J. ;
Bennett, Amy C. ;
Gonzalez-Akre, Erika B. ;
Muller-Landau, Helene C. ;
Wright, S. Joseph ;
Abu Salim, Kamariah ;
Almeyda Zambrano, Angelica Maria ;
Alonso, Alfonso ;
Baltzer, Jennifer L. ;
Basset, Yves ;
Bourg, Norman A. ;
Broadbent, Eben N. ;
Brockelman, Warren Y. ;
Bunyavejchewin, Sarayudh ;
Burslem, David F. R. P. ;
Butt, Nathalie ;
Cao, Min ;
Cardenas, Dairon ;
Chuyong, George B. ;
Clay, Keith ;
Cordell, Susan ;
Dattaraja, Handanakere S. ;
Deng, Xiaobao ;
Detto, Matteo ;
Du, Xiaojun ;
Duque, Alvaro ;
Erikson, David L. ;
Ewango, Corneille E. N. ;
Fischer, Gunter A. ;
Fletcher, Christine ;
Foster, Robin B. ;
Giardina, Christian P. ;
Gilbert, Gregory S. ;
Gunatilleke, Nimal ;
Gunatilleke, Savitri ;
Hao, Zhanqing ;
Hargrove, William W. ;
Hart, Terese B. ;
Hau, Billy C. H. ;
He, Fangliang ;
Hoffman, Forrest M. ;
Howe, Robert W. ;
Hubbell, Stephen P. ;
Inman-Narahari, Faith M. ;
Jansen, Patrick A. ;
Jiang, Mingxi ;
Johnson, Daniel J. ;
Kanzaki, Mamoru ;
Kassim, Abdul Rahman .
GLOBAL CHANGE BIOLOGY, 2015, 21 (02) :528-549
[4]  
[Anonymous], 2004, INT ARCH PHOTOGRAMME
[5]   Mapping tropical forest carbon: Calibrating plot estimates to a simple LiDAR metric [J].
Asner, Gregory P. ;
Mascaro, Joseph .
REMOTE SENSING OF ENVIRONMENT, 2014, 140 :614-624
[6]   Generalizing predictive models of forest inventory attributes using an area-based approach with airborne LiDAR data [J].
Bouvier, Marc ;
Durrieu, Sylvie ;
Fournier, Richard A. ;
Renaud, Jean-Pierre .
REMOTE SENSING OF ENVIRONMENT, 2015, 156 :322-334
[7]   Area-based vs tree-centric approaches to mapping forest carbon in Southeast Asian forests from airborne laser scanning data [J].
Coomes, David A. ;
Dalponte, Michele ;
Jucker, Tommaso ;
Asner, Gregory P. ;
Banin, Lindsay F. ;
Burslem, David F. R. P. ;
Lewis, Simon L. ;
Nilus, Reuben ;
Phillips, Oliver L. ;
Phua, Mui-How ;
Qie, Lan .
REMOTE SENSING OF ENVIRONMENT, 2017, 194 :77-88
[8]  
Dalponte M., 2016, ITCSEGMENT INDIVIDUA
[9]   Simulating the impact of discrete-return lidar system and survey characteristics over young conifer and broadleaf forests [J].
Disney, M. I. ;
Kalogirou, V. ;
Lewis, P. ;
Prieto-Blanco, A. ;
Hancock, S. ;
Pfeifer, M. .
REMOTE SENSING OF ENVIRONMENT, 2010, 114 (07) :1546-1560
[10]  
Evans DL, 2001, PHOTOGRAMM ENG REM S, V67, P1133