Wigner Function Non-Classicality Induced in a Charge Qubit Interacting with a Dissipative Field Cavity

被引:0
作者
Mohamed, Abdel-Baset A. [1 ,2 ]
Khalil, Eied M. [3 ]
AL-Rezami, Afrah Y. [1 ,4 ]
Eleuch, Hichem [5 ,6 ,7 ]
机构
[1] Prince Sattam bin Abdulaziz Univ, Dept Math, Coll Sci & Humanities Al Aflaj, Al Aflaj 11942, Saudi Arabia
[2] Assiut Univ, Dept Math, Fac Sci, Assiut 71515, Egypt
[3] Taif Univ, Dept Math, Coll Sci, POB 11099, At Taif 21944, Saudi Arabia
[4] Sanaa Univ, Dept Stat & Informat, Coll Commerce & Econ, Sanaa 15542, Yemen
[5] Univ Sharjah, Dept Appl Phys & Astron, Sharjah 27272, U Arab Emirates
[6] Abu Dhabi Univ, Dept Appl Sci & Math, Coll Arts & Sci, Abu Dhabi 59911, U Arab Emirates
[7] Texas A&M Univ, Inst Quantum Sci & Engn, College Stn, TX 77843 USA
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 05期
关键词
charge– qubit system; quasi-probability wigner function; entanglement; SUPERCONDUCTING QUBIT; COHERENT CAVITY; QUANTUM; ENTANGLEMENT; STATES; INFORMATION; DYNAMICS; PHOTON; MODEL; SEPARABILITY;
D O I
10.3390/sym13050802
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We explore a superconducting charge qubit interacting with a dissipative microwave cavity field. Wigner distribution and its non-classicality are investigated analytically under the effects of the qubit-cavity interaction, the qubit-cavity detuning, and the dissipation. As the microwave cavity field is initially in an even coherent state, we investigate the non-classicality of the Wigner distributions. Partially and maximally frozen entanglement are produced by the qubit-cavity interaction, depending on detuning and cavity dissipation. It is found that the amplitudes and frequency of the Wigner distribution can be controlled by the phase space parameters, the qubit-cavity interaction and the detuning, as well as by the dissipation. The cavity dissipation reduces the non-classicality; this process can be accelerated by the detuning.
引用
收藏
页数:11
相关论文
共 65 条
[1]   Exact treatment of the Jaynes-Cummings model under the action of an external classical field [J].
Abdalla, M. Sebawe ;
Khalil, E. M. ;
Obada, A. S. -F. .
ANNALS OF PHYSICS, 2011, 326 (09) :2486-2498
[2]   Quasienergies and dynamics of a superconducting qubit in a time-modulated field [J].
Abovyan, Gor A. ;
Kryuchkyan, Gagik Yu. .
PHYSICAL REVIEW A, 2013, 88 (03)
[3]   Resource theory of quantum non-Gaussianity and Wigner negativity [J].
Albarelli, Francesco ;
Genoni, Marco G. ;
Paris, Matteo G. A. ;
Ferraro, Alessandro .
PHYSICAL REVIEW A, 2018, 98 (05)
[4]  
[Anonymous], 2006, OPEN QUANTUM SYSTEMS
[5]   Negativity volume of the generalized Wigner function as an entanglement witness for hybrid bipartite states [J].
Arkhipov, Ievgen I. ;
Barasinski, Artur ;
Svozilik, Jiri .
SCIENTIFIC REPORTS, 2018, 8
[6]   The Quantum Yang-Baxter Conditions: The Fundamental Relations behind the Nambu-Goldstone Theorem [J].
Arraut, Ivan .
SYMMETRY-BASEL, 2019, 11 (06)
[7]   Entanglement measure using Wigner function: Case of generalized vortex state formed by multiphoton subtraction [J].
Banerji, Anindya ;
Singh, Ravindra Pratap ;
Bandyopadhyay, Abir .
OPTICS COMMUNICATIONS, 2014, 330 :85-90
[8]   DISSIPATION IN A FUNDAMENTAL MODEL OF QUANTUM OPTICAL RESONANCE [J].
BARNETT, SM ;
KNIGHT, PL .
PHYSICAL REVIEW A, 1986, 33 (04) :2444-2448
[9]   QUANTUM DECOHERENCE IN MIXED QUANTUM-CLASSICAL SYSTEMS - NONADIABATIC PROCESSES [J].
BITTNER, ER ;
ROSSKY, PJ .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (18) :8130-8143
[10]   Non-stationarity and dissipative time crystals: spectral properties and finite-size effects [J].
Booker, Cameron ;
Buca, Berislav ;
Jaksch, Dieter .
NEW JOURNAL OF PHYSICS, 2020, 22 (08)