General Nth-order superintegrable systems separating in polar coordinates

被引:24
作者
Escobar-Ruiz, A. M. [1 ,2 ]
Winternitz, P. [1 ,2 ]
Yurdusen, I [1 ,2 ,3 ]
机构
[1] Univ Montreal, Ctr Rech Math, CP 6128,Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada
[2] Univ Montreal, Dept Math & Stat, CP 6128,Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada
[3] Hacettepe Univ, Dept Math, TR-06800 Ankara, Turkey
基金
加拿大自然科学与工程研究理事会;
关键词
superintegrability; separation of variables; Painleve property; QUANTUM INTEGRABILITY; 3RD-ORDER INTEGRALS; HYDROGEN-ATOM; MECHANICS; SEARCH; MOTION; DRACH;
D O I
10.1088/1751-8121/aadc23
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The general description of superintegrable systems with one polynomial integral of order N in the momenta is presented for a Hamiltonian system in two-dimensional Euclidean plane. We consider classical and quantum Hamiltonian systems allowing separation of variables in polar coordinates. The potentials can be classified into two major classes and their main properties are described. We conjecture that a new infinite family of superintegrable potentials in terms of the sixth Painleve transcendent P-6 exists and demonstrate this for the first few cases.
引用
收藏
页数:12
相关论文
共 36 条
[1]   A CONNECTION BETWEEN NON-LINEAR EVOLUTION-EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF P-TYPE .1. [J].
ABLOWITZ, MJ ;
RAMANI, A ;
SEGUR, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (04) :715-721
[2]   Fifth-order superintegrable quantum systems separating in Cartesian coordinates: Doubly exotic potentials [J].
Abouamal, Ismail ;
Winternitz, Pavel .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (02)
[3]   On the theory of the hydrogen atom. [J].
Bargmann, V. .
ZEITSCHRIFT FUR PHYSIK, 1936, 99 (7-8) :576-582
[4]  
Bertrand M.G., 1873, Compte. Rendus., V77, P849
[5]  
Burchnall JL, 1923, P LOND MATH SOC, V21, P420
[6]  
Conte R., 2008, The Painleve Handbook
[7]   THE HYDROGEN ALGEBRA AS CENTERLESS TWISTED KAC-MOODY ALGEBRA [J].
DABOUL, J ;
SLODOWY, P ;
DABOUL, C .
PHYSICS LETTERS B, 1993, 317 (03) :321-328
[8]   GENERALIZED DEFORMED OSCILLATOR AND NONLINEAR ALGEBRAS [J].
DASKALOYANNIS, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (15) :L789-L794
[9]  
Drach J., 1935, C. R. Acad. Sci. Paris, V64, P141, DOI [DOI 10.21136/CPMF.1935.121249, /10.21136/CPMF.1935.121249]
[10]  
Escobar-Ruiz A M, 2018, ARXIV180405751MATHPH