Holomorphic Cartan geometries and Calabi-Yau manifolds

被引:5
作者
Biswas, Indranil [1 ]
McKay, Benjamin [2 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
[2] Natl Univ Ireland Univ Coll Cork, Sch Math Sci, Cork, Ireland
关键词
Cartan geometry; Calabi-Yau manifold; Connection;
D O I
10.1016/j.geomphys.2009.12.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M be a connected complex projective manifold such that c(1)(T((1,0))M) = 0. If M admits a holomorphic Cartan geometry, then we show that M is holomorphically covered by an abelian variety. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:661 / 663
页数:3
相关论文
共 5 条
[1]  
BEAUVILLE A, 1983, J DIFFER GEOM, V18, P755
[2]   Vector bundles with holomorphic connection over a projective manifold with tangent bundle of nonnegative degree [J].
Biswas, I .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (10) :2827-2834
[3]  
DPS J-P., 1994, Journal of Algebraic Geometry, V3, P295
[4]  
MCKAY B, HOLOMORPHIC PARABOLI
[5]   RICCI CURVATURE OF A COMPACT KAHLER MANIFOLD AND COMPLEX MONGE-AMPERE EQUATION .1. [J].
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1978, 31 (03) :339-411