Realization of photonic spin Hall effect by breaking the rotation symmetry of optical field in light-matter interaction

被引:0
作者
Liu, Yuanyuan [1 ]
Ling, Xiaohui [2 ]
Zhang, Jin [1 ]
Ke, Yougang [1 ]
Shu, Weixing [3 ]
Luo, Hailu [1 ]
Wen, Shuangchun [3 ]
机构
[1] Hunan Univ, Sch Phys & Elect, Lab Spin Photon, Changsha 410082, Hunan, Peoples R China
[2] Hengyang Normal Univ, Hunan Prov Key Lab Intelligent Informat Proc & Ap, Coll Phys & Elect Engn, Hengyang 421002, Peoples R China
[3] Hunan Univ, Sch Phys & Elect, Key Lab Micro Nano Optoelect Devices, Minist Educ, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Photonic spin hall effect; Spin-dependent shift; Rotation symmetry; Pancharatnam-Berry phase; ORBITAL ANGULAR-MOMENTUM; METASURFACES; PROPAGATION; BEAMS; PHASE;
D O I
10.1016/j.optcom.2018.06.056
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Photonic spin Hall effect (SHE) manifests itself as spin-dependent shift or splitting of a light beam, which is derived from spin-orbit interactions, and can be realized by breaking the rotation symmetry of light-matter interaction systems. Here, we demonstrate the observation of a photonic SHE by breaking the rotation symmetry of the optical field, while keeping the rotation symmetry of the inhomogeneous waveplate. The inhomogeneous waveplate constructed by dielectric nanostructures, introduces a spin-dependent Pancharatnam-Berry phase to the two spin components of the input beam, i.e., the left- and right-circular polarization components acquire exactly opposite vortex phases. During beam propagation, they experience opposite azimuthal rotations, and induce a four-lobe spin-dependent splitting in the azimuthal direction. In addition, the spin-dependent splitting becomes more evident upon beam propagation, and can be enhanced by increasing the topological orders of the nanostructures. For comparison, we also examine that no spin-dependent splitting can be observed when keeping the rotation symmetry of the incident optical field.
引用
收藏
页码:238 / 243
页数:6
相关论文
共 30 条
[1]   Role of beam propagation in Goos-Hanchen and Imbert-Fedorov shifts [J].
Aiello, A. ;
Woerdman, J. P. .
OPTICS LETTERS, 2008, 33 (13) :1437-1439
[2]   ORBITAL ANGULAR-MOMENTUM OF LIGHT AND THE TRANSFORMATION OF LAGUERRE-GAUSSIAN LASER MODES [J].
ALLEN, L ;
BEIJERSBERGEN, MW ;
SPREEUW, RJC ;
WOERDMAN, JP .
PHYSICAL REVIEW A, 1992, 45 (11) :8185-8189
[3]   Spin-orbit interaction of light and diffraction of polarized beams [J].
Bekshaev, Aleksandr Ya .
JOURNAL OF OPTICS, 2017, 19 (08)
[4]   Ultrafast laser direct writing and nanostructuring in transparent materials [J].
Beresna, Martynas ;
Gecevicius, Mindaugas ;
Kazansky, Peter G. .
ADVANCES IN OPTICS AND PHOTONICS, 2014, 6 (03) :293-339
[6]   Spin-orbit interactions of light [J].
Bliokh, K. Y. ;
Rodriguez-Fortuno, F. J. ;
Nori, F. ;
Zayats, A. V. .
NATURE PHOTONICS, 2015, 9 (12) :796-808
[7]   Coriolis effect in optics: Unified geometric phase and spin-Hall effect [J].
Bliokh, Konstantin Y. ;
Gorodetski, Yuri ;
Kleiner, Vladimir ;
Hasman, Erez .
PHYSICAL REVIEW LETTERS, 2008, 101 (03)
[8]   Geometrodynamics of spinning light [J].
Bliokh, Konstantin Y. ;
Niv, Avi ;
Kleiner, Vladimir ;
Hasman, Erez .
NATURE PHOTONICS, 2008, 2 (12) :748-753
[9]   Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet [J].
Bliokh, KY ;
Bliokh, YP .
PHYSICAL REVIEW LETTERS, 2006, 96 (07)
[10]   Pancharatnam-Berry phase in space-variant polarization-state manipulations with subwavelength gratings [J].
Bomzon, Z ;
Kleiner, V ;
Hasman, E .
OPTICS LETTERS, 2001, 26 (18) :1424-1426