Two-dimensional layered lithium lanthanum titanium oxide/graphene-like composites as electrodes for lithium-ion batteries

被引:4
作者
Gu, Bo [1 ,2 ,3 ]
Zhan, Chenyang [2 ,3 ,4 ]
Liu, Bing Heng [2 ,3 ,4 ]
Wang, Gang [2 ,3 ,4 ]
Zhang, Qian [1 ]
Zhang, Ming [2 ,3 ,4 ]
Shen, Zhongrong [2 ,3 ,4 ]
机构
[1] Jiangxi Univ Sci & Technol, Key Lab Power Batteries & Relat Mat, Fac Mat Met & Chem, Ganzhou 341000, Peoples R China
[2] Chinese Acad Sci, CAS Key Lab Design & Assembly Funct Nanostruct, Fuzhou 350002, Peoples R China
[3] Chinese Acad Sci, Fujian Key Lab Nanomat, Fujian Inst Res Struct Matter, Fuzhou 350002, Peoples R China
[4] Chinese Acad Sci, Haixi Inst, Xiamen Inst Rare Earth Mat, Xiamen Key Lab Rare Earth Photoelectr Funct Mat, Xiamen 361021, Peoples R China
基金
中国国家自然科学基金;
关键词
CARBON NANOSHEETS; ELECTROCHEMICAL PERFORMANCE; ANODE MATERIALS; ENERGY-STORAGE; K2LA2TI3O10; TIO2; FABRICATION; EXTRACTION; TITANATES; GROWTH;
D O I
10.1039/d2dt00751g
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Perovskite-structured (ABO(3)) lithium lanthanum titanate (LixLa(2-x)/3TiO3, LLTO) is widely used in all solid state lithium ion batteries due to its high ionic conductivity. In this study, a two-dimensional LLTO nanosheet/graphene (LLTO/C) nanosheet composite has been designed as an electrode material for lithium-ion batteries (LIBs). LLTO/C not only exhibits the ionic conductivity properties of perovskite-type LLTO, but the graphene between the layers of LLTO nanosheets also endows the material with additional electronic conductivity. Moreover, LLTO@C-600 exhibits an excellent rate capability as the electrode for delithiation with a high specific capacity of 350 mA h g(-1) at 20 mA g(-1), and 70% of the specific capacity can be maintained at 1.0 A g(-1) after 800 cycles. The excellent electrochemical performances can be attributed to the superior interficial capacitive Li+ storage capability.
引用
收藏
页码:7076 / 7083
页数:8
相关论文
共 44 条
[1]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/nmat3601, 10.1038/NMAT3601]
[2]   Ionic conductivity, lithium insertion and extraction of lanthanum lithium titanate [J].
Chen, CH ;
Amine, K .
SOLID STATE IONICS, 2001, 144 (1-2) :51-57
[3]   Lithium Ion Diffusion Mechanism in Lithium Lanthanum Titanate Solid-State Electrolytes from Atomistic Simulations [J].
Chen, Chao-hsu ;
Du, Jincheng .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2015, 98 (02) :534-542
[4]   Controllable growth of carbon nanosheets in the montmorillonite interlayers for high-rate and stable anode in lithium ion battery [J].
Chen, Mao-Sung ;
Fu, Wenwu ;
Hu, Yanjie ;
Chen, Mao-Yuan ;
Chiou, Yuh-Jing ;
Lin, Hong-Ming ;
Zhang, Ming ;
Shen, Zhongrong .
NANOSCALE, 2020, 12 (30) :16262-16269
[5]   Disordered carbon coating free Li0.2375La0.5875TiO3: a superior perovskite anode material for high power long-life lithium-ion batteries [J].
Dai, Keshu ;
Wang, Qinyun ;
Xie, Yuting ;
Shui, Miao ;
Shu, Jie .
JOURNAL OF MATERIALS SCIENCE, 2022, 57 (04) :2825-2838
[6]   Insight into lithium-ion mobility in Li2La(TaTi)O7 [J].
Fanah, Selorm Joy ;
Yu, Ming ;
Huq, Ashfia ;
Ramezanipour, Farshid .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (44) :22152-22160
[7]  
Fanahlal S.-J., 2022, EUR J INORG CHEM, V7
[8]  
Fu WW, 2021, CHINESE J STRUC CHEM, V40, P797, DOI 10.14102/j.cnki.0254-5861.2011-3054
[9]   An orderly arrangement of layered carbon Nanosheet/TiO2 nanosheet stack with superior artificially interfacial lithium pseudocapacity [J].
Fu, Wenwu ;
Li, Yaoting ;
Chen, Mao-sung ;
Hu, Yanjie ;
Liu, Bingheng ;
Zhang, Kai ;
Zhan, Chenyang ;
Zhang, Ming ;
Shen, Zhongrong .
JOURNAL OF POWER SOURCES, 2020, 468
[10]   LaTi21O38/CuLaO2/COO Nanorods as High-Performance Anode Materials for Lithium-Ion Batteries [J].
Gao, Nan ;
Liu, Yuzhou ;
Xia, Yu ;
Li, Xing .
CHEMISTRYSELECT, 2021, 6 (40) :11108-11114