On the transmuted extreme value distribution with application

被引:79
作者
Aryal, Gokarna R. [1 ]
Tsokos, Chris P. [2 ]
机构
[1] Purdue Univ Calumet, Dept Math CS & Stat, Hammond, IN 46323 USA
[2] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
关键词
Generalized extreme value distribution; Transmutation map; Gumbel distribution; Return level;
D O I
10.1016/j.na.2009.01.168
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A functional composition of the cumulative distribution function of one probability distribution with the inverse cumulative distribution function of another is called the transmutation map. In this article, we will use the quadratic rank transmutation map (QRTM) in order to generate a flexible family of probability distributions taking extreme value distribution as the base value distribution by introducing a new parameter that would offer more distributional flexibility. It will be shown that the analytical results are applicable to model real world data. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:E1401 / E1407
页数:7
相关论文
共 11 条
[1]  
ARYAL G, 2007, J STAT THEORY APPL, V6, P45
[2]  
Aryal Gokarna R., 2008, Neural, Parallel & Scientific Computations, V16, P35
[3]  
Azzalini A., REFERENCES SKEW NORM
[4]  
EDGEWORTH FY, 1886, PHILOS MAG, V21, P308
[5]  
Genton M. G., 2004, SKEW ELLIPTICAL DIST
[6]  
Gradshteyn S., 2014, Table of Integrals, Series, and Products, V8th
[7]  
Gumbel E., 1958, Statistics of Extremes
[8]  
Kotz S., 2000, Extreme Value Distributions: Theory andApplications
[9]  
Koutsoyiannis D., 2004, Hydrological Risk: recent advances in peak river ow modelling, P303
[10]  
Shaw W, 2007, Research Report