Dynamics of Winds and Currents Coupled to Surface Waves

被引:303
作者
Sullivan, Peter P. [1 ]
McWilliams, James C. [2 ,3 ]
机构
[1] Natl Ctr Atmospher Res, Mesoscale & Microscale Meteorol Div, Earth & Sun Syst Lab, Boulder, CO 80307 USA
[2] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
boundary layer; Langmuir turbulence; wave breaking; large-eddy simulation; air-sea interaction; hurricane; LARGE-EDDY-SIMULATION; OCEANIC BOUNDARY-LAYER; AIR-SEA INTERACTION; LANGMUIR-CIRCULATION; BREAKING WAVES; TURBULENT-FLOW; MOMENTUM FLUX; GAS-EXCHANGE; VORTEX-FORCE; WATER-WAVES;
D O I
10.1146/annurev-fluid-121108-145541
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We discuss the coupling processes between surface gravity waves and adjacent winds and currents in turbulent boundary layers. These processes mediate exchanges of momentum, beat, and gases between the atmosphere and ocean and thus are of global significance for climate. Surface waves grow primarily by pressure-form stress from airflow over the waveforms, and they dissipate in the open sea by wave breaking that injects and stirs momentum, energy, and bubbles into the ocean. Wave motions pump wind eddies that control fluxes across the lower atmosphere. Flow separation occurs behind steep wave crests, and at high winds the crests flatten into spume, which diminishes the drag coefficient. In the ocean the Lagrangian-mean wave velocity, Stokes drift, induces a vortex force and material transport. These generate Langmuir circulations penetrating throughout the boundary layer and enhancing entrainment at the stratified interior interface in combination with other turbulent eddies and inertial-shear instability.
引用
收藏
页码:19 / 42
页数:24
相关论文
共 50 条
  • [31] INTERNAL WAVES COUPLED TO SURFACE GRAVITY WAVES IN THREE DIMENSIONS
    Craig, Walter
    Guyenne, Philippe
    Sulem, Catherine
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2015, 13 (04) : 893 - 910
  • [32] A Moving-Wave Implementation in WRF to Study the Impact of Surface Water Waves on the Atmospheric Boundary Layer
    Zhu, Peiyun
    Li, Tianyi
    Mirocha, Jeffrey D.
    Arthur, Robert S.
    Wu, Zhao
    Fringer, Oliver B.
    MONTHLY WEATHER REVIEW, 2023, 151 (11) : 2883 - 2903
  • [33] Modulation of Surface Gravity Waves by Internal Waves
    Lenain, Luc
    Pizzo, Nick
    JOURNAL OF PHYSICAL OCEANOGRAPHY, 2021, 51 (09) : 2735 - 2748
  • [34] Statistics of Bubble Plumes Generated by Breaking Surface Waves
    Derakhti, Morteza
    Thomson, Jim
    Bassett, Christopher
    Malila, Mika
    Kirby, James T.
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2024, 129 (05)
  • [35] Impacts of surface gravity waves on a tidal front: A coupled model perspective
    Brumer, Sophia E.
    Garnier, Valerie
    Redelsperger, Jean-Luc
    Bouin, Marie-Noelle
    Ardhuin, Fabrice
    Accensi, Mickael
    OCEAN MODELLING, 2020, 154
  • [36] Winds, Waves, and Turbulence on a Shallow Continental Shelf during Passage of a Tropical Storm
    Gargett, Ann E.
    Savidge, Dana K.
    JOURNAL OF PHYSICAL OCEANOGRAPHY, 2020, 50 (05) : 1341 - 1364
  • [37] A linear model for the structure of turbulence beneath surface water waves
    Teixeira, M. A. C.
    OCEAN MODELLING, 2011, 36 (1-2) : 149 - 162
  • [38] The Impact of Nonbreaking Waves on Wind-Driven Ocean Surface Turbulence
    Savelyev, I. B.
    Buckley, M. P.
    Haus, B. K.
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2020, 125 (01)
  • [39] Spatial Dynamics and Solitary Hydroelastic Surface Waves
    Ahmad, R.
    Groves, M. D.
    WATER WAVES, 2024, 6 (01) : 5 - 47
  • [40] Vertical Profiles of the Wave-Induced Airflow above Ocean Surface Waves
    Grare, Laurent
    Lenain, Luc
    Melville, W. Kendall
    JOURNAL OF PHYSICAL OCEANOGRAPHY, 2018, 48 (12) : 2901 - 2922