Development and Processing of Continuous Flax and Carbon Fiber-Reinforced Thermoplastic Composites by a Modified Material Extrusion Process

被引:37
|
作者
Kuschmitz, Sebastian [1 ]
Schirp, Arne [2 ]
Busse, Johannes [1 ]
Watschke, Hagen [1 ]
Schirp, Claudia [2 ]
Vietor, Thomas [1 ]
机构
[1] TU Braunschweig, Inst Engn Design, D-38106 Braunschweig, Germany
[2] Fraunhofer Inst Wood Res, Wilhelm Kauditz Inst WKI, D-38108 Braunschweig, Germany
关键词
3D printing; additive manufacturing; material extrusion; continuous fiber-reinforced polymer additive manufacturing; carbon fiber; flax fiber; polylactic acid; design for additive manufacturing; PERFORMANCE; BEHAVIOR;
D O I
10.3390/ma14092332
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Additive manufacturing, especially material extrusion (MEX), has received a lot of attention recently. The reasons for this are the numerous advantages compared to conventional manufacturing processes, which result in various new possibilities for product development and -design. By applying material layer by layer, parts with complex, load-path optimized geometries can be manufactured at neutral costs. To expand the application fields of MEX, high-strength and simultaneously lightweight materials are required which fulfill the requirements of highly resilient technical parts. For instance, the embedding of continuous carbon and flax fibers in a polymer matrix offers great potential for this. To achieve the highest possible variability with regard to the material combinations while ensuring simple and economical production, the fiber-matrix bonding should be carried out in one process step together with the actual parts manufacture. This paper deals with the adaptation and improvement of the 3D printer on the one hand and the characterization of 3D printed test specimens based on carbon and flax fibers on the other hand. For this purpose, the print head development for in-situ processing of contin uous fiber-reinforced parts with improved mechanical properties is described. It was determined that compared to neat polylactic acid (PLA), the continuous fiber-reinforced test specimens achieve up to 430% higher tensile strength and 890% higher tensile modulus for the carbon fiber reinforcement and an increase of up to 325% in tensile strength and 570% in tensile modulus for the flax fibers. Similar improvements in performance were achieved in the bending tests.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Continuous Fiber-Reinforced Material Extrusion with Hybrid Composites of Carbon and Aramid Fibers
    Heitkamp, Tim
    Girnth, Simon
    Kuschmitz, Sebastian
    Klawitter, Guenter
    Waldt, Nils
    Vietor, Thomas
    APPLIED SCIENCES-BASEL, 2022, 12 (17):
  • [2] Processing and mechanical characterization of short carbon fiber-reinforced epoxy composites for material extrusion additive manufacturing
    Hmeidat, Nadim S.
    Elkins, Daniel S.
    Peter, Hutchison R.
    Kumar, Vipin
    Compton, Brett G.
    COMPOSITES PART B-ENGINEERING, 2021, 223
  • [3] Three-Dimensional Printing of Continuous Flax Fiber-Reinforced Thermoplastic Composites by Five-Axis Machine
    Zhang, Haiguang
    Liu, Di
    Huang, Tinglong
    Hu, Qingxi
    Lammer, Herfried
    MATERIALS, 2020, 13 (07)
  • [4] Water absorption rates and mechanical properties of material extrusion-printed continuous carbon fiber-reinforced nylon composites
    Guo, Anfu
    Liu, Changcun
    Li, Shuo
    Zhou, Xiaoyan
    Wang, Jin
    Wang, Shaoqing
    Qu, Peng
    Hu, Yingbin
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 21 : 3098 - 3112
  • [5] Recycling of carbon fiber-reinforced thermoplastic and thermoset composites: A review
    Stieven Montagna, Larissa
    Ferreira de Melo Morgado, Guilherme
    Lemes, Ana Paula
    Roberto Passador, Fabio
    Cerqueira Rezende, Mirabel
    JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS, 2023, 36 (08) : 3455 - 3480
  • [6] Interlaminar fracture toughness of flax, carbon, and hybrid flax carbon-woven fiber-reinforced composites
    Jamil, Abuzar
    Prabhakar, M. N.
    Lee, Dong Woo
    Song, Jung-il
    POLYMER COMPOSITES, 2025, 46 (04) : 3527 - 3541
  • [7] Fast layer fiber orientation optimization method for continuous fiber-reinforced material extrusion process
    Marchal, Valentin
    Zhang, Yicha
    Labed, Nadia
    Lachat, Remy
    Peyraut, Francois
    MATERIALS SCIENCE IN ADDITIVE MANUFACTURING, 2023, 2 (01):
  • [8] Investigation into surface-coated continuous flax fiber-reinforced natural sandwich composites via vacuum-assisted material extrusion
    Cao, Dongyang
    PROGRESS IN ADDITIVE MANUFACTURING, 2024, 9 (04) : 1135 - 1149
  • [9] Enhanced buckling strength of the thin-walled continuous carbon fiber-reinforced thermoplastic composite through dual coaxial nozzles material extrusion process
    Cao, Dongyang
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 128 (3-4) : 1305 - 1315
  • [10] Fiber-laying-assisted material extrusion additive manufacturing of continuous carbon fiber reinforced SiC ceramic matrix composites
    Wang, Wenqing
    Gao, Xiong
    Li, Zengchan
    Shen, Chujing
    Wang, Gang
    He, Rujie
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 890