Existence of nonstationary bubbles in higher dimensions

被引:29
作者
Maris, M [1 ]
机构
[1] Univ Paris 11, Dept Math, UMR 8628, F-91405 Orsay, France
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2002年 / 81卷 / 12期
关键词
nonlinear Schrodinger equation; existence of travelling waves; Local Mountain-Pass Theorem; regularity;
D O I
10.1016/S0021-7824(02)01274-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are interested in the existence of travelling-waves for the nonlinear Schrodinger equation in R-N with "psi(3) - psi(5)"-type nonlinearity. First, we prove an abstract result in critical point theory (a local variant of the classical saddle-point theorem). Using this result, we get the existence of travelling-waves moving with sufficiently small velocity in space dimension N greater than or equal to 4. (C) 2002 Editions scientifiques et medicales Elsevier SAS. All rights reserved.
引用
收藏
页码:1207 / 1239
页数:33
相关论文
共 13 条
[1]   SOLITON-LIKE BUBBLES IN A SYSTEM OF INTERACTING BOSONS [J].
BARASHENKOV, IV ;
MAKHANKOV, VG .
PHYSICS LETTERS A, 1988, 128 (1-2) :52-56
[2]   STABILITY OF THE SOLITON-LIKE BUBBLES [J].
BARASHENKOV, IV ;
GOCHEVA, AD ;
MAKHANKOV, VG ;
PUZYNIN, IV .
PHYSICA D, 1989, 34 (1-2) :240-254
[3]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[4]  
BREZIS H, 1979, J MATH PURE APPL, V58, P137
[5]   INSTABILITY OF STATIONARY BUBBLES [J].
DEBOUARD, A .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1995, 26 (03) :566-582
[6]  
LIN Z, 1999, SLOW TRAVELLING BUBB
[7]  
Lin Z., 2002, Adv. Differ. Equ, V7, P897, DOI [10.57262/ade/1356651683, DOI 10.57262/ADE/1356651683]
[9]   PRINCIPLE OF SYMMETRIC CRITICALITY [J].
PALAIS, RS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 69 (01) :19-30
[10]  
PELETIER LA, 1983, ARCH RATION MECH AN, V81, P181