Multiobjective evolutionary optimization of traffic flow and pollution in Montevideo, Uruguay

被引:25
|
作者
Peres, Matias [1 ]
Ruiz, German [1 ]
Nesmachnow, Sergio [1 ]
Olivera, Ana C. [2 ]
机构
[1] Univ Republica, Montevideo, Uruguay
[2] CONICET CIT GSJ, Caleta Olivia, Argentina
关键词
Traffic flow; Pollution; Multiobjective evolutionary algorithms; Simulation; SYSTEM; PRIORITY; SIGNALS;
D O I
10.1016/j.asoc.2018.05.044
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traffic congestion and pollution are important problems in modern cities. As improving traffic flow via infrastructure modifications is expensive and intrusive, approaches using simulations emerge as economic alternatives to test different policies, with less negative impact on cities. This article proposes a specific methodology combining simulation and multiobjective evolutionary methods to simultaneously optimize traffic flow and vehicular emissions via traffic lights planning in urban areas. The experimental evaluation is performed over three real areas in Montevideo (Uruguay). Significant improvements on travel times and pollution are reported over the current configuration of traffic lights cycles and also over other traffic regulation techniques. Moreover, the multiobjective approach provides policy-makers with a set of alternatives to choose from, allowing the evaluation of several scenarios and the dynamic modification of traffic light cycles. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:472 / 485
页数:14
相关论文
共 50 条
  • [1] A Survey on Evolutionary Constrained Multiobjective Optimization
    Liang, Jing
    Ban, Xuanxuan
    Yu, Kunjie
    Qu, Boyang
    Qiao, Kangjia
    Yue, Caitong
    Chen, Ke
    Tan, Kay Chen
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2023, 27 (02) : 201 - 221
  • [2] Evolutionary Multiobjective Optimization in Materials Science and Engineering
    Coello Coello, Carlos A.
    Landa Becerra, Ricardo
    MATERIALS AND MANUFACTURING PROCESSES, 2009, 24 (02) : 119 - 129
  • [3] A tutorial on multiobjective optimization: fundamentals and evolutionary methods
    Michael T. M. Emmerich
    André H. Deutz
    Natural Computing, 2018, 17 : 585 - 609
  • [4] A tutorial on multiobjective optimization: fundamentals and evolutionary methods
    Emmerich, Michael T. M.
    Deutz, Andre H.
    NATURAL COMPUTING, 2018, 17 (03) : 585 - 609
  • [5] A Hybrid Evolutionary Immune Algorithm for Multiobjective Optimization Problems
    Lin, Qiuzhen
    Chen, Jianyong
    Zhan, Zhi-Hui
    Chen, Wei-Neng
    Coello Coello, Carlos A.
    Yin, Yilong
    Lin, Chih-Min
    Zhang, Jun
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2016, 20 (05) : 711 - 729
  • [6] Application of Multiobjective Evolutionary Techniques for Robust Portfolio Optimization
    Garcia Rodriguez, Sandra
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2013, 2 (02): : 63 - 64
  • [7] Hybrid Disease Diagnosis Using Multiobjective Optimization with Evolutionary Parameter Optimization
    Nalluri, MadhuSudana Rao
    Kannan, K.
    Manisha, M.
    Roy, Diptendu Sinha
    JOURNAL OF HEALTHCARE ENGINEERING, 2017, 2017
  • [8] Multiobjective Optimization of the Energy Efficiency and the Steam Flow in a Bagasse Boiler
    Molina, Ducardo L. L.
    Medina, Juan Ricardo Vidal
    Gutierrez, Alexis Sagastume
    Cabello Eras, Juan J. J.
    Lopez, Jesus A.
    Hincapie, Simon
    Quispe, Enrique C. C.
    SUSTAINABILITY, 2023, 15 (14)
  • [9] Multitasking Multiobjective Evolutionary Operational Indices Optimization of Beneficiation Processes
    Yang, Cuie
    Ding, Jinliang
    Jin, Yaochu
    Wang, Chengzhi
    Chai, Tianyou
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2019, 16 (03) : 1046 - 1057
  • [10] Evolutionary multiobjective optimization of the multi-location transshipment problem
    Nabil Belgasmi
    Lamjed Ben Saïd
    Khaled Ghédira
    Operational Research, 2008, 8 (2) : 167 - 183