Variation in atomistic structure due to annealing at diamond/silicon heterointerfaces fabricated by surface activated bonding

被引:2
作者
Ohno, Yutaka [1 ]
Liang, Jianbo [2 ]
Yoshida, Hideto [3 ]
Shimizu, Yasuo [4 ,5 ]
Nagai, Yasuyoshi [4 ]
Shigekawa, Naoteru [2 ]
机构
[1] Tohoku Univ, Inst Mat Res IMR, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
[2] Osaka City Univ, Grad Sch Engn, 3-3-138 Sugimoto, Osaka 5588585, Japan
[3] Osaka Univ, SANKEN, 8-1 Mihogaoka, Osaka 5670047, Japan
[4] Tohoku Univ, Inst Mat Res IMR, 2145-2 Narita Cho, Oarai, Ibaraki 3111313, Japan
[5] Natl Inst Mat Sci, 1-2-1 Sengen, Tsukuba, Ibaraki 3050047, Japan
关键词
surface activated bonding; diamond; silicon; voids; gettering; silicon carbide; transient enhanced diffusion; SILICON-ON-DIAMOND; SI; DIFFUSION; DIODES; OXYGEN;
D O I
10.35848/1347-4065/ac5d11
中图分类号
O59 [应用物理学];
学科分类号
摘要
Chemical composition around diamond/silicon heterointerfaces fabricated by surface activated bonding (SAB) at room temperature is examined by energy-dispersive X-ray spectroscopy under scanning transmission electron microscopy. Iron impurities segregate just on the bonding interfaces, while oxygen impurities segregate off the bonding interfaces in the silicon side by 3-4 nm. Oxygen atoms would segregate so as to avoid the amorphous compound with silicon and carbon atoms, self-organized at the bonding interfaces in the SAB process. When the bonding interfaces are annealed at 1000 degrees C, the amorphous compound converts into cubic silicon carbide (c-SiC), and nano-voids 5-15 nm in size are formed at the region between silicon and c-SiC, at which the oxygen density is high before annealing. The nano-voids can act as the gettering sites in which metal impurities are preferentially agglomerated, and the impurity gettering would help to improve the electronic properties of the bonding interfaces by annealing.
引用
收藏
页数:5
相关论文
共 40 条
[31]   Thermal conductivity measurements on CVD diamond [J].
Twitchen, DJ ;
Pickles, CSJ ;
Coe, SE ;
Sussmann, RS ;
Hall, CE .
DIAMOND AND RELATED MATERIALS, 2001, 10 (3-7) :731-735
[32]   Fabrication of p+-Si/p-diamond heterojunction diodes and effects of thermal annealing on their electrical properties [J].
Uehigashi, Yota ;
Ohmagari, Shinya ;
Umezawa, Hitoshi ;
Yamada, Hideaki ;
Liang, Jianbo ;
Shigekawa, Naoteru .
DIAMOND AND RELATED MATERIALS, 2021, 120
[33]   Diamond Metal-Semiconductor Field-Effect Transistor With Breakdown Voltage Over 1.5 kV [J].
Umezawa, Hitoshi ;
Matsumoto, Takeshi ;
Shikata, Shin-Ichi .
IEEE ELECTRON DEVICE LETTERS, 2014, 35 (11) :1112-1114
[34]   High temperature application of diamond power device [J].
Umezawa, Hitoshi ;
Nagase, Masanori ;
Kato, Yukako ;
Shikata, Shin-ichi .
DIAMOND AND RELATED MATERIALS, 2012, 24 :201-205
[35]   Grown-in defects in silicon produced by agglomeration of vacancies and self-interstitial [J].
Voronkov, V. V. .
JOURNAL OF CRYSTAL GROWTH, 2008, 310 (7-9) :1307-1314
[36]   Diamond as an electronic material [J].
Wort, Chris J. H. ;
Balmer, Richard S. .
MATERIALS TODAY, 2008, 11 (1-2) :22-28
[37]   Fabrication of 1 Inch Mosaic Crystal Diamond Wafers [J].
Yamada, Hideaki ;
Chayahara, Akiyoshi ;
Mokuno, Yoshiaki ;
Umezawa, Hitoshi ;
Shikata, Shin-ichi ;
Fujimori, Naoji .
APPLIED PHYSICS EXPRESS, 2010, 3 (05)
[38]   Effects of surface activation time on Si-Si direct wafer bonding at room temperature [J].
Yang, Song ;
Qu, Yongfeng ;
Deng, Ningkang ;
Wang, Kang ;
He, Shi ;
Yuan, Yuan ;
Hu, Wenbo ;
Wu, Shengli ;
Wang, Hongxing .
MATERIALS RESEARCH EXPRESS, 2021, 8 (08)
[39]   Study of fusion bonding of diamond to silicon for silicon-on-diamond technology [J].
Yushin, GN ;
Wolter, SD ;
Kvit, AV ;
Collazo, R ;
Stoner, BR ;
Prater, JT ;
Sitar, Z .
APPLIED PHYSICS LETTERS, 2002, 81 (17) :3275-3277
[40]  
Zhou Y., 2017, APPL PHYS LETT, V111, DOI [10.1063/1.4994926, DOI 10.1063/1.4994926]