A time domain Galerkin boundary element method for a heat conduction interface problem

被引:0
作者
Vodicka, R. [1 ]
机构
[1] Tech Univ Kosice, Fac Civil Engn, Kosice, Slovakia
来源
MESH REDUCTION METHODS: BEM/MRM XXXI | 2009年 / 49卷
关键词
boundary element method; interface problem; non-matching meshes; heat conduction; convolution quadrature;
D O I
10.2495/BE090171
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A heat conduction problem with a material or other type interface is solved. The numerical method used includes a boundary element technique presented as a Galerkin boundary element method for the space variables together with convolution quadrature in time. The treatment of the interface conditions enabled them to be formulated in a weak sense, with generally curved interfaces and independent meshing of each side of the interfaces. Results of the examples present influences of non-conformingly meshed interfaces, a comparison with a known analytical solution, and the time evolution of the interface solution with different material properties of the substructures adjacent to the interface.
引用
收藏
页码:187 / 198
页数:12
相关论文
共 9 条
[1]  
Bonnet M., 1998, Appl Mech Rev, V51, P669
[2]  
CARINI A, 1997, ARCH MECH, V49, P253
[3]  
Costabel M., 2004, ENCY COMPUTATIONAL M
[4]   Review of coupling methods for non-matching meshes [J].
de Boer, A. ;
van Zuijlen, A. H. ;
Bijl, H. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (08) :1515-1525
[5]   Domain decomposition methods via boundary integral equations [J].
Hsiao, GC ;
Steinbach, O ;
Wendland, WL .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 125 (1-2) :521-537
[6]   Boundary element tearing and interconnecting methods [J].
Langer, U ;
Steinbach, O .
COMPUTING, 2003, 71 (03) :205-228
[7]   TIME DISCRETIZATION OF PARABOLIC BOUNDARY INTEGRAL-EQUATIONS [J].
LUBICH, C ;
SCHNEIDER, R .
NUMERISCHE MATHEMATIK, 1992, 63 (04) :455-481
[8]  
Vodicka R, 2007, CMES-COMP MODEL ENG, V17, P173
[9]  
WOHLMUTH BI, 2001, LECT NOTES COMPUTATI, V17