A FREE BOUNDARY PROBLEM ARISING FROM BRANCHING BROWNIAN MOTION WITH SELECTION

被引:10
作者
Berestycki, Julien [1 ]
Brunet, Eric
Nolen, James
Penington, Sarah
机构
[1] Univ Oxford, Dept Stat, Oxford, England
基金
美国国家科学基金会;
关键词
D O I
10.1090/tran/8370
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a free boundary problem for a parabolic partial differential equation in which the solution is coupled to the moving boundary through an integral constraint. The problem arises as the hydrodynamic limit of an interacting particle system involving branching Brownian motion with selection, the so-called Brownian bees model which is studied in the companion paper (see Julien Berestycki, Eric Brunet, James Nolen, and Sarah Penington [Brownian bees in the infinite swarm limit, 2020]). In this paper we prove existence and uniqueness of the solution to the free boundary problem, and we characterise the behaviour of the solution in the large time limit.
引用
收藏
页码:6269 / 6329
页数:61
相关论文
共 20 条
[1]  
BECKMAN E., 2019, THESIS DUKE U
[2]  
Bensoussan A., 1978, Methodes Math. Inform
[3]   Global existence for a free boundary problem of Fisher-KPP type [J].
Berestycki, Julien ;
Brunet, Eric ;
Penington, Sarah .
NONLINEARITY, 2019, 32 (10) :3912-3939
[4]  
Berestycki Julien, 2020, ARXIV200606486
[5]   THE SHAPE OF MULTIDIMENSIONAL BRUNET-DERRIDA PARTICLE SYSTEMS [J].
Berestycki, Nathanael ;
Zhao, Lee Zhuo .
ANNALS OF APPLIED PROBABILITY, 2018, 28 (02) :651-687
[6]  
Billingsley P., 1999, Wiley Series in Probability and Statistics: Probability and Statistics, DOI DOI 10.1002/9780470316962
[7]   Effect of selection on ancestry:: An exactly soluble case and its phenomenological generalization [J].
Brunet, E. ;
Derrida, B. ;
Mueller, A. H. ;
Munier, S. .
PHYSICAL REVIEW E, 2007, 76 (04)
[8]   Noisy traveling waves: Effect of selection on genealogies [J].
Brunet, E. ;
Derrida, B. ;
Mueller, A. H. ;
Munier, S. .
EUROPHYSICS LETTERS, 2006, 76 (01) :1-7
[9]   Brownian Particles with Rank-Dependent Drifts: Out-of-Equilibrium Behavior [J].
Cabezas, M. ;
Dembo, A. ;
Sarantsev, A. ;
Sidoravicius, V. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2019, 72 (07) :1424-1458
[10]   FREE-BOUNDARY PROBLEM FOR THE HEAT-EQUATION ARISING IN FLAME PROPAGATION [J].
CAFFARELLI, LA ;
VAZQUEZ, JL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (02) :411-441