Applications of Deep-Learning in Exploiting Large-Scale and Heterogeneous Compound Data in Industrial Pharmaceutical Research

被引:32
|
作者
David, Laurianne [1 ,2 ]
Arus-Pous, Josep [1 ,3 ]
Karlsson, Johan [4 ]
Engkvist, Ola [1 ]
Bjerrum, Esben Jannik [1 ]
Kogej, Thierry [1 ]
Kriegl, Jan M. [5 ]
Beck, Bernd [5 ]
Chen, Hongming [1 ,6 ]
机构
[1] AstraZeneca, Biopharmaceut R&D, Discovery Sci, Hit Discovery, Gothenburg, Sweden
[2] Rhein Friedrich Wilhelms Univ Bonn, Dept Life Sci Informat, B IT, Bonn, Germany
[3] Univ Bern, Dept Chem & Biochem, Bern, Switzerland
[4] AstraZeneca, Biopharmaceut R&D, Discovery Sci, Quantitat Biol, Gothenburg, Sweden
[5] Boehringer Ingelheim Pharma GmbH & Co KG, Dept Med Chem, Biberach, Germany
[6] Chem & Chem Biol Ctr, Guangzhou Regenerat Med & Hlth Guangdong Lab, Guangzhou, Guangdong, Peoples R China
基金
欧盟地平线“2020”;
关键词
Artificial intelligence; deep learning; Chemogenomics; Large-scale data; pharmaceutical industry; INTERFERENCE COMPOUNDS PAINS; HUMAN-GENOME-PROJECT; DRUG DISCOVERY; ASSAY INTERFERENCE; SCREENING LIBRARIES; TARGET PREDICTION; MICROSCOPY IMAGES; CONNECTIVITY MAP; SMALL MOLECULES; DESIGN;
D O I
10.3389/fphar.2019.01303
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
In recent years, the development of high-throughput screening (HTS) technologies and their establishment in an industrialized environment have given scientists the possibility to test millions of molecules and profile them against a multitude of biological targets in a short period of time, generating data in a much faster pace and with a higher quality than before. Besides the structure activity data from traditional bioassays, more complex assays such as transcriptomics profiling or imaging have also been established as routine profiling experiments thanks to the advancement of Next Generation Sequencing or automated microscopy technologies. In industrial pharmaceutical research, these technologies are typically established in conjunction with automated platforms in order to enable efficient handling of screening collections of thousands to millions of compounds. To exploit the ever-growing amount of data that are generated by these approaches, computational techniques are constantly evolving. In this regard, artificial intelligence technologies such as deep learning and machine learning methods play a key role in cheminformatics and bio-image analytics fields to address activity prediction, scaffold hopping, de novo molecule design, reaction/retrosynthesis predictions, or high content screening analysis. Herein we summarize the current state of analyzing large-scale compound data in industrial pharmaceutical research and describe the impact it has had on the drug discovery process over the last two decades, with a specific focus on deep-learning technologies.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Automatic text generation using deep learning: providing large-scale support for online learning communities
    Du, Hanxiang
    Xing, Wanli
    Pei, Bo
    INTERACTIVE LEARNING ENVIRONMENTS, 2023, 31 (08) : 5021 - 5036
  • [42] DeepCPI:A Deep Learning-based Framework for Large-scale in silico Drug Screening
    Fangping Wan
    Yue Zhu
    Hailin Hu
    Antao Dai
    Xiaoqing Cai
    Ligong Chen
    Haipeng Gong
    Tian Xia
    Dehua Yang
    Ming-Wei Wang
    Jianyang Zeng
    Genomics,Proteomics & Bioinformatics, 2019, 17 (05) : 478 - 495
  • [43] DeepCPI: A Deep Learning-based Framework for Large-scale in silico Drug Screening
    Wan, Fangping
    Zhu, Yue
    Hu, Hailin
    Dai, Antao
    Cai, Xiaoqing
    Chen, Ligong
    Gong, Haipeng
    Xia, Tian
    Yang, Dehua
    Wang, Ming-Wei
    Zeng, Jianyang
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2019, 17 (05) : 478 - 495
  • [44] Deep learning-based coagulant dosage prediction for extreme events leveraging large-scale data
    Kim, Jiwoong
    Hua, Chuanbo
    Lin, Subin
    Kang, Seoktae
    Kang, Joo-Hyon
    Park, Mi-Hyun
    JOURNAL OF WATER PROCESS ENGINEERING, 2024, 66
  • [45] Integration of multimodal data for large-scale rapid agricultural land evaluation using machine learning and deep learning approaches
    Li, Liangdan
    Liu, Luo
    Peng, Yiping
    Su, Yingyue
    Hu, Yueming
    Zou, Runyan
    GEODERMA, 2023, 439
  • [46] Deriving a robust deep-learning model for subcortical brain segmentation by using a large-scale database: Preprocessing, reproducibility, and accuracy of volume estimation
    Weng, Jenn-Shiuan
    Huang, Teng-Yi
    NMR IN BIOMEDICINE, 2023, 36 (05)
  • [47] Fast Semisupervised Learning With Bipartite Graph for Large-Scale Data
    He, Fang
    Nie, Feiping
    Wang, Rong
    Li, Xuelong
    Jia, Weimin
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (02) : 626 - 638
  • [48] Large-Scale Machine Learning and Optimization for Bioinformatics Data Analysis
    Cheng, Jianlin
    ACM-BCB 2020 - 11TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2020,
  • [49] Interpretable deep learning for consistent large-scale urban population estimation using Earth observation data
    Doda, Sugandha
    Kahl, Matthias
    Ouan, Kim
    Obadic, Ivica
    Wang, Yuanyuan
    Taubenboeck, Hannes
    Zhu, Xiao Xiang
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 128
  • [50] LARGE-SCALE FACE IMAGE RETRIEVAL BASED ON HADOOP AND DEEP LEARNING
    Huang Yuanyuan
    Tang Yuan
    Xiong Taisong
    2020 17TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2020, : 326 - 329