On the derivative of meromorphic functions with multiple zeros

被引:53
作者
Bergweiler, W
Pang, XC
机构
[1] Univ Kiel, Math Seminar, D-24098 Kiel, Germany
[2] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
关键词
D O I
10.1016/S0022-247X(02)00349-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f be a transcendental meromorphic function and let R be a rational function, R not equivalent to 0. We show that if all zeros and poles of f are multiple, except possibly finitely many, then f' - R has infinitely many zeros. If f has finite order and R is a polynomial, then the conclusion holds without the hypothesis that poles be multiple. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:285 / 292
页数:8
相关论文
共 21 条
[1]  
[Anonymous], 1989, SUBHARMONIC FUNCTION
[2]  
Bergweiler W., 1997, B HONG KONG MATH SOC, V1, P97
[3]  
Bergweiler W, 1995, REV MAT IBEROAM, V11, P355
[4]  
CHEN H, 1993, SCI CHINA SER A, V36, P674
[5]  
CHEN HH, 1995, SCI CHINA SER A, V38, P789
[6]  
Hayman W. K., 1960, COMMENT MATH HELV, V34, P75
[7]   PICARD VALUES OF MEROMORPHIC FUNCTIONS AND THEIR DERIVATIVES [J].
HAYMAN, WK .
ANNALS OF MATHEMATICS, 1959, 70 (01) :9-42
[8]  
HAYMAN WK, 1964, MEROMORPHIC FUNCTION
[9]  
Hua X.H., 1990, KODAI MATH J, V13, P386
[10]  
Jank G., 1985, EINFUHRUNG THEORIE G