On the clique number of the square of a line graph and its relation to maximum degree of the line graph

被引:10
作者
Faron, Maxime [1 ]
Postle, Luke [2 ]
机构
[1] Ecole Normale Super Lyon, Dept Comp Sci, Lyon, France
[2] Univ Waterloo, Dept Combinator & Optimizat, Canada Res Chair Graph Theory, Waterloo, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
clique number; square of a line graph; STRONG CHROMATIC INDEX;
D O I
10.1002/jgt.22452
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1985, Erdos and Nesetril conjectured that the square of the line graph of a graph G, that is, L(G)(2), can be colored with 5/4 Delta(G)(2) colors. This conjecture implies the weaker conjecture that the clique number of such a graph, that is, omega(L(G)(2)), is at most 5/4 Delta(G)(2). In 2015, Sleszynska-Nowak proved that omega(L(G)(2)) <= 3/2 Delta(G)(2). In this paper, we prove that omega(L(G)(2)) <= 4/3 Delta(G)(2). This theorem follows from our stronger result that omega(L(G)(2)) <=sigma G)(2)/3 where sigma(G). max(uv is an element of E(G)) d (u) + d (v) = Delta(L(G)) + 2.
引用
收藏
页码:261 / 274
页数:14
相关论文
共 9 条
  • [1] Bang-Jensen J., 2006, TOPICS DISCRETE MATH, P615
  • [2] A Stronger Bound for the Strong Chromatic Index
    Bruhn, Henning
    Joos, Felix
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2018, 27 (01) : 21 - 43
  • [3] Erdos P., 1989, Irregularities of partitions, Algorithms and Combinatorics: Study and Research Texts, V8, P162
  • [4] FAUDREE RJ, 1990, ARS COMBINATORIA, V29B, P205
  • [5] INDUCED MATCHINGS IN BIPARTITE GRAPHS
    FAUDREE, RJ
    GYARFAS, A
    SCHELP, RH
    TUZA, Z
    [J]. DISCRETE MATHEMATICS, 1989, 78 (1-2) : 83 - 87
  • [6] A bound on the strong chromatic index of a graph
    Molloy, M
    Reed, B
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1997, 69 (02) : 103 - 109
  • [7] Molloy M., 2000, Graph Colouring and the Probabilistic Method
  • [8] Postle L., ARXIV181006704
  • [9] Clique number of the square of a line graph
    Sleszynska-Nowak, Malgorzata
    [J]. DISCRETE MATHEMATICS, 2016, 339 (05) : 1551 - 1556