Internal screening and dielectric engineering in magic-angle twisted bilayer graphene

被引:74
作者
Pizarro, J. M. [1 ,2 ]
Rosner, M. M. [3 ]
Thomale, R. [4 ]
Valenti, R. [5 ]
Wehling, T. O. [1 ,2 ]
机构
[1] Univ Bremen, Inst Theoret Phys, Otto Hahn Allee 1, D-28359 Bremen, Germany
[2] Univ Bremen, Bremen Ctr Computat Mat Sci, Fallturm 1a, D-28359 Bremen, Germany
[3] Radbound Univ, Inst Mol & Mat, NL-6525 AJ Nijmegen, Netherlands
[4] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany
[5] Goethe Univ Frankfurt Main, Inst Theoret Phys, D-60438 Frankfurt, Germany
关键词
SUPERCONDUCTIVITY; BEHAVIOR; BANDS;
D O I
10.1103/PhysRevB.100.161102
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magic-angle twisted bilayer graphene (MA-tBLG) has appeared as a tunable testing ground to investigate the conspiracy of electronic interactions, band structure, and lattice degrees of freedom to yield exotic quantum many-body ground states in a two-dimensional (2D) Dirac material framework. While the impact of external parameters such as doping or magnetic field can be conveniently modified and analyzed, the all-surface nature of the quasi-2D electron gas combined with its intricate internal properties pose a challenging task to characterize the quintessential nature of the different insulating and superconducting states found in experiments. We analyze the interplay of internal screening and dielectric environment on the intrinsic electronic interaction profile of MA-tBLG. We find that interlayer coupling generically enhances the internal screening. The influence of the dielectric environment on the effective interaction strength depends decisively on the electronic state of MA-tBLG. Thus, we propose the experimental tailoring of the dielectric environment, e.g., by varying the capping layer composition and thickness, as a promising pursuit to provide further evidence for resolving the hidden nature of the quantum many-body states in MA-tBLG.
引用
收藏
页数:6
相关论文
共 47 条
[1]   Frequency-dependent local interactions and low-energy effective models from electronic structure calculations [J].
Aryasetiawan, F ;
Imada, M ;
Georges, A ;
Kotliar, G ;
Biermann, S ;
Lichtenstein, AI .
PHYSICAL REVIEW B, 2004, 70 (19) :1-8
[2]   Moire bands in twisted double-layer graphene [J].
Bistritzer, Rafi ;
MacDonald, Allan H. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (30) :12233-12237
[3]   Correlated insulator behaviour at half-filling in magic-angle graphene superlattices [J].
Cao, Yuan ;
Fatemi, Valla ;
Demir, Ahmet ;
Fang, Shiang ;
Tomarken, Spencer L. ;
Luo, Jason Y. ;
Sanchez-Yamagishi, Javier D. ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Kaxiras, Efthimios ;
Ashoori, Ray C. ;
Jarillo-Herrero, Pablo .
NATURE, 2018, 556 (7699) :80-+
[4]   Unconventional superconductivity in magic-angle graphene superlattices [J].
Cao, Yuan ;
Fatemi, Valla ;
Fang, Shiang ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Kaxiras, Efthimios ;
Jarillo-Herrero, Pablo .
NATURE, 2018, 556 (7699) :43-+
[5]  
Choi Y., 2019, NAT PHYS
[6]   Strong electron-phonon coupling, electron-hole asymmetry, and nonadiabaticity in magic-angle twisted bilayer graphene [J].
Choi, Young Woo ;
Choi, Hyoung Joon .
PHYSICAL REVIEW B, 2018, 98 (24)
[7]   Phases of a phenomenological model of twisted bilayer graphene [J].
Dodaro, J. F. ;
Kivelson, S. A. ;
Schattner, Y. ;
Sun, X. Q. ;
Wang, C. .
PHYSICAL REVIEW B, 2018, 98 (07)
[8]  
Fu Y., ARXIV180904604
[9]   Kohn-Luttinger Superconductivity in Twisted Bilayer Graphene [J].
Gonzalez, J. ;
Stauber, T. .
PHYSICAL REVIEW LETTERS, 2019, 122 (02)
[10]   Marginal-Fermi-liquid behavior from two-dimensional Coulomb interaction [J].
González, J ;
Guinea, F ;
Vozmediano, MAH .
PHYSICAL REVIEW B, 1999, 59 (04) :R2474-R2477