Distributed Edge Cloud R-CNN for Real Time Object Detection

被引:0
作者
Herrera, Joshua [1 ]
Demir, Mevlut A. [1 ]
Yousefi, Parsa [1 ]
Prevost, John J. [1 ]
Rad, Paul [1 ]
机构
[1] Univ Texas San Antonio, Dept Elect & Comp Engn, One UTSA Circle, San Antonio, TX 78249 USA
来源
2018 WORLD AUTOMATION CONGRESS (WAC) | 2018年
关键词
Machine learning; Object detection; CNN; R-CNN; Region proposal; Edge Computing; Distributed computing;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cloud computing infrastructures have become the de-facto platform for data driven machine learning applications. However, these centralized models of computing are unqualified for dispersed high-volume real-time edge data intensive applications such as real time object detection, where video streams may be captured at multiple geographical locations. While many recent advancements in object detection have been made using Convolutional Neural Networks, these performance improvements only focus on a single, contiguous object detection model. In this paper, we propose a distributed Edge-Cloud R-CNN pipeline. By splitting the object detection pipeline into components and dynamically distributing these components in the cloud, we can achieve optimal performance to enable real time object detection. As a proof of concept, we evaluate the performance of the proposed system on a distributed computing platform including cloud servers and edge-embedded devices for real-time object detection on live video streams.
引用
收藏
页码:146 / 151
页数:6
相关论文
共 50 条
[41]   Nested object detection using mask R-CNN: application to bee and varroa detection [J].
Kriouile, Yassine ;
Ancourt, Corinne ;
Wegrzyn-Wolska, Katarzyna ;
Bougueroua, Lamine .
Neural Computing and Applications, 2024, 36 (35) :22587-22609
[42]   Real-Time Object Classification on an Enamel Paint Coating Conveyor Line Using Mask R-CNN [J].
Citlak, Tarik ;
Pillay, Nelendran .
AUTOMATION, 2024, 5 (03) :213-229
[43]   Research on abnormal object detection in specific region based on Mask R-CNN [J].
Xiong, Haitao ;
Wu, Jiaqing ;
Liu, Qing ;
Cai, Yuanyuan .
INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2020, 17 (03)
[44]   Mask R-CNN Object Detection Method Based on Improved Feature Pyramid [J].
Ren Zhijun ;
Lin Suzhen ;
Li Dawei ;
Wang Lifang ;
Zuo Jianhong .
LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (04)
[45]   IoU-aware feature fusion R-CNN for dense object detection [J].
Jixuan Hong ;
Xueqin He ;
Zhaoli Deng ;
Chenhui Yang .
Machine Vision and Applications, 2024, 35
[46]   RecFRCN: Few-Shot Object Detection With Recalibrated Faster R-CNN [J].
Zhang, Youyou ;
Lu, Tongwei .
IEEE ACCESS, 2023, 11 :121109-121117
[47]   Mask R-CNN Based Object Detection for Intelligent Wireless Power Transfer [J].
Wu, Aozhou ;
Zhang, Qingqing ;
Fang, Wen ;
Deng, Hao ;
Jiang, Sai ;
Liu, Qingwen ;
Xia, Pengfei .
2018 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2018,
[48]   Privacy-Preserving Object Detection for Medical Images With Faster R-CNN [J].
Liu, Yang ;
Ma, Zhuo ;
Liu, Ximeng ;
Ma, Siqi ;
Ren, Kui .
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2022, 17 :69-84
[49]   IoU-aware feature fusion R-CNN for dense object detection [J].
Hong, Jixuan ;
He, Xueqin ;
Deng, Zhaoli ;
Yang, Chenhui .
MACHINE VISION AND APPLICATIONS, 2024, 35 (01)
[50]   Multiscale anchor box and optimized classification with faster R-CNN for object detection [J].
Wang, Sheng-Ye ;
Qu, Zhong .
IET IMAGE PROCESSING, 2023, 17 (05) :1322-1333