Distributed Edge Cloud R-CNN for Real Time Object Detection

被引:0
作者
Herrera, Joshua [1 ]
Demir, Mevlut A. [1 ]
Yousefi, Parsa [1 ]
Prevost, John J. [1 ]
Rad, Paul [1 ]
机构
[1] Univ Texas San Antonio, Dept Elect & Comp Engn, One UTSA Circle, San Antonio, TX 78249 USA
来源
2018 WORLD AUTOMATION CONGRESS (WAC) | 2018年
关键词
Machine learning; Object detection; CNN; R-CNN; Region proposal; Edge Computing; Distributed computing;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cloud computing infrastructures have become the de-facto platform for data driven machine learning applications. However, these centralized models of computing are unqualified for dispersed high-volume real-time edge data intensive applications such as real time object detection, where video streams may be captured at multiple geographical locations. While many recent advancements in object detection have been made using Convolutional Neural Networks, these performance improvements only focus on a single, contiguous object detection model. In this paper, we propose a distributed Edge-Cloud R-CNN pipeline. By splitting the object detection pipeline into components and dynamically distributing these components in the cloud, we can achieve optimal performance to enable real time object detection. As a proof of concept, we evaluate the performance of the proposed system on a distributed computing platform including cloud servers and edge-embedded devices for real-time object detection on live video streams.
引用
收藏
页码:146 / 151
页数:6
相关论文
共 50 条
[21]   A Page Object Detection Method Based on Mask R-CNN [J].
Xu, Canhui ;
Shi, Cao ;
Bi, Hengyue ;
Liu, Chuanqi ;
Yuan, Yongfeng ;
Guo, Haoyan ;
Chen, Yinong .
IEEE ACCESS, 2021, 9 :143448-143457
[22]   GFRF R-CNN: Object Detection Algorithm for Transmission Lines [J].
Yan, Xunguang ;
Wang, Wenrui ;
Lu, Fanglin ;
Fan, Hongyong ;
Wu, Bo ;
Yu, Jianfeng .
CMC-COMPUTERS MATERIALS & CONTINUA, 2025, 82 (01) :1439-1458
[23]   A Novel Keypoint Supplemented R-CNN for UAV Object Detection [J].
Butler, Justin ;
Leung, Henry .
IEEE SENSORS JOURNAL, 2023, 23 (24) :30883-30892
[24]   Atrous Faster R-CNN for Small Scale Object Detection [J].
Guan, Tongfan ;
Zhu, Hao .
2017 2ND INTERNATIONAL CONFERENCE ON MULTIMEDIA AND IMAGE PROCESSING (ICMIP), 2017, :16-21
[25]   Improvement of Object Detection Based on Faster R-CNN and YOLO [J].
Fan, Jiayi ;
Lee, JangHyeon ;
Jung, InSu ;
Lee, YongKeun .
2021 36TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC), 2021,
[26]   A DeNoising FPN With Transformer R-CNN for Tiny Object Detection [J].
Liu, Hou-, I ;
Tseng, Yu-Wen ;
Chang, Kai-Cheng ;
Wang, Pin-Jyun ;
Shuai, Hong-Han ;
Cheng, Wen-Huang .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 :1-15
[27]   Object Detection Algorithm Based on Improved Faster R-CNN [J].
Zhou Bing ;
Li Runxin ;
Shang Zhenhong ;
Li Xiaowu .
LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (10)
[28]   R-CNN Based Vehicle Object Detection via Segmentation Capabilities in Road Scenes [J].
Riaz Chughtai, Bisma ;
Alhasson, Haifa F. ;
Alnusayri, Mohammed ;
Alatiyyah, Mohammed ;
Aljuaid, Hanan ;
Jalal, Ahmad ;
Park, Jeongmin .
IEEE ACCESS, 2025, 13 :3355-3370
[29]   Road Object Detection in Bangladesh using Faster R-CNN: A Deep Learning Approach [J].
Datta, Anik ;
Meghla, Tamara Islam ;
Khatun, Tania ;
Bhuiya, Mehedi Hasan ;
Shuvo, Shakilur Rahman ;
Rahman, Md Mahfujur .
PROCEEDINGS OF 2020 6TH IEEE INTERNATIONAL WOMEN IN ENGINEERING (WIE) CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (WIECON-ECE 2020), 2020, :352-355
[30]   Sparse R-CNN: An End-to-End Framework for Object Detection [J].
Sun, Peize ;
Zhang, Rufeng ;
Jiang, Yi ;
Kong, Tao ;
Xu, Chenfeng ;
Zhan, Wei ;
Tomizuka, Masayoshi ;
Yuan, Zehuan ;
Luo, Ping .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (12) :15650-15664