Distributed Edge Cloud R-CNN for Real Time Object Detection

被引:0
|
作者
Herrera, Joshua [1 ]
Demir, Mevlut A. [1 ]
Yousefi, Parsa [1 ]
Prevost, John J. [1 ]
Rad, Paul [1 ]
机构
[1] Univ Texas San Antonio, Dept Elect & Comp Engn, One UTSA Circle, San Antonio, TX 78249 USA
来源
2018 WORLD AUTOMATION CONGRESS (WAC) | 2018年
关键词
Machine learning; Object detection; CNN; R-CNN; Region proposal; Edge Computing; Distributed computing;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cloud computing infrastructures have become the de-facto platform for data driven machine learning applications. However, these centralized models of computing are unqualified for dispersed high-volume real-time edge data intensive applications such as real time object detection, where video streams may be captured at multiple geographical locations. While many recent advancements in object detection have been made using Convolutional Neural Networks, these performance improvements only focus on a single, contiguous object detection model. In this paper, we propose a distributed Edge-Cloud R-CNN pipeline. By splitting the object detection pipeline into components and dynamically distributing these components in the cloud, we can achieve optimal performance to enable real time object detection. As a proof of concept, we evaluate the performance of the proposed system on a distributed computing platform including cloud servers and edge-embedded devices for real-time object detection on live video streams.
引用
收藏
页码:146 / 151
页数:6
相关论文
共 50 条
  • [1] ME R-CNN: Multi-Expert R-CNN for Object Detection
    Lee, Hyungtae
    Eum, Sungmin
    Kwon, Heesung
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 (29) : 1030 - 1044
  • [2] Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
    Ren, Shaoqing
    He, Kaiming
    Girshick, Ross
    Sun, Jian
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (06) : 1137 - 1149
  • [3] Real-time smoke detection with Faster R-CNN
    Li, Lei
    Liu, Fenggang
    Ding, Yidan
    PROCEEDINGS OF 2021 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INFORMATION SYSTEMS (ICAIIS '21), 2021,
  • [4] Relief R-CNN: Utilizing Convolutional Features for Fast Object Detection
    Li, Guiying
    Liu, Junlong
    Jiang, Chunhui
    Zhang, Liangpeng
    Lin, Minlong
    Tang, Ke
    ADVANCES IN NEURAL NETWORKS, PT I, 2017, 10261 : 386 - 394
  • [5] Real-Time Water Surface Object Detection Based on Improved Faster R-CNN
    Zhang, Lili
    Zhang, Yi
    Zhang, Zhen
    Shen, Jie
    Wang, Huibin
    SENSORS, 2019, 19 (16)
  • [6] Object detection and recognition using contour based edge detection and fast R-CNN
    Rani, Shilpa
    Ghai, Deepika
    Kumar, Sandeep
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (29) : 42183 - 42207
  • [7] Object detection and recognition using contour based edge detection and fast R-CNN
    Shilpa Rani
    Deepika Ghai
    Sandeep Kumar
    Multimedia Tools and Applications, 2022, 81 : 42183 - 42207
  • [8] R-CNN Object Detection Inference With Deep Learning Accelerator
    Qian, Yuxin
    Zheng, Hongli
    He, Dazhi
    Zhang, Zhexi
    Zhang, Zongpu
    2018 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC WORKSHOPS), 2018, : 297 - 302
  • [9] A Real Time Object Detection in Integral Part of Computer Vision using Novel Image Classification of Faster R-CNN Algorithm over Fast R-CNN Algorithm
    Srikar, M.
    Malathi, K.
    JOURNAL OF PHARMACEUTICAL NEGATIVE RESULTS, 2022, 13 (04) : 1686 - 1693
  • [10] Street Object Detection Based on Faster R-CNN
    Cai, Wendi
    Li, Jiadie
    Xie, Zhongzhao
    Zhao, Tao
    Lu, Kang
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 9500 - 9503