THE CAUCHY PROBLEM FOR A GENERALIZED KORTEWEG-DE VRIES EQUATION IN HOMOGENEOUS SOBOLEV SPACES

被引:1
作者
Xue, Ruying [1 ]
Hu, Sufen [1 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2010年 / 14卷 / 02期
关键词
Korteweg-de Vries equation; Well-posedness; DISPERSIVE EQUATIONS; BOUSSINESQ EQUATION; ILL-POSEDNESS; KDV EQUATION;
D O I
10.11650/twjm/1500405803
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Considered in this article is the Cauchy problem of a generalized Korteweg-de Vries equation {u(t) + u(xxx) + uu(x) + vertical bar D(x)vertical bar(2 alpha)u = 0, t is an element of R(+), t is an element of R(+), x is an element of R, u(x, 0) = phi(x) with 0 <= alpha <= 1. The local well-posedness of the Cauchy problem in the homogeneous Sobolev space (H) over dot(s)(R) for s is an element of (alpha-3/2(2-alpha)), 0] is proved. In addition, the mapping that associated to appropriate initial-data the corresponding solution is analytic as a function between appropriate Banach spaces.
引用
收藏
页码:479 / 499
页数:21
相关论文
共 12 条