Model order reduction approach to the one-dimensional collisionless closure problem

被引:4
作者
Gillot, C. [1 ,2 ]
Dif-Pradalier, G. [1 ]
Garbet, X. [1 ]
Ghendrih, P. [1 ]
Grandgirard, V. [1 ]
Sarazin, Y. [1 ]
机构
[1] CEA, IRFM, F-13108 St Paul Les Durance, France
[2] Ecole Ponts ParisTech, F-77455 Champs Sur Marne, France
关键词
FLUID MODELS; EQUATIONS; TRANSPORT; PLASMAS; SYSTEMS;
D O I
10.1063/5.0023407
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The problem of the fluid closure for the collisionless linear Vlasov system is investigated using a perspective from control theory and model order reduction. The balanced truncation method is applied to the 1D-1V Vlasov system. The first few reduction singular values are well-separated, indicating potentially low-dimensional dynamics. To avoid large-dimensional numerical work, a reduced model is formulated using rational interpolation, generalizing the seminal work from Hammett and Perkins. The resulting models are found to outperform the state-of-the-art models for thermal phase velocities. Thanks to the versatility of this formulation, an application to toroidal gyrokinetic dynamics is discussed.
引用
收藏
页数:10
相关论文
共 50 条
[41]   Dynamics of spin helices in the one-dimensional XX model [J].
Pereira, Darren ;
Mueller, Erich J. .
PHYSICAL REVIEW A, 2022, 106 (04)
[42]   Periodic ordering of clusters in a one-dimensional lattice model [J].
Pekalski, J. ;
Ciach, A. ;
Almarza, N. G. .
JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (14)
[43]   An effective description of a periodic one-dimensional hopping model [J].
Zhang YunXin .
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2011, 54 (03) :401-405
[44]   One-dimensional dynamic model of a paper forming process [J].
Turnbull, PF ;
Perkins, NC ;
Schultz, WW ;
Beuther, PD .
TAPPI JOURNAL, 1997, 80 (01) :245-253
[45]   On the Hughes' model for pedestrian flow: The one-dimensional case [J].
Di Francesco, Marco ;
Markowich, Peter A. ;
Pietschmann, Jan-Frederik ;
Wolfram, Marie-Therese .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (03) :1334-1362
[46]   Superfluidity in the one-dimensional Bose-Hubbard model [J].
Kiely, Thomas G. ;
Mueller, Erich J. .
PHYSICAL REVIEW B, 2022, 105 (13)
[47]   A high order approximation of hyperbolic conservation laws in networks: Application to one-dimensional blood flow [J].
Mueller, Lucas O. ;
Blanco, Pablo J. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 300 :423-437
[48]   Entropy-stable model reduction of one-dimensional hyperbolic systems using rational quadratic manifolds [J].
Klein, R. B. ;
Sanderse, B. ;
Costa, P. ;
Pecnik, R. ;
Henkes, R. A. W. M. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2025, 528
[49]   Generalized Riemann problem for the one-dimensional Chaplygin gas with a friction term [J].
Singh, Mayank ;
Arora, Rajan .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2023, 148