High-throughput organ-on-chip platform with integrated programmable fluid flow and real-time sensing for complex tissue models in drug development workflows†

被引:155
作者
Azizgolshani, H. [1 ]
Coppeta, J. R. [1 ]
Vedula, E. M. [1 ]
Marr, E. E. [1 ]
Cain, B. P. [1 ]
Luu, R. J. [1 ]
Lech, M. P. [2 ]
Kann, S. H. [1 ,3 ]
Mulhern, T. J. [1 ]
Tandon, V. [1 ]
Tan, K. [1 ]
Haroutunian, N. J. [1 ]
Keegan, P. [1 ]
Rogers, M. [1 ]
Gard, A. L. [1 ]
Baldwin, K. B. [1 ]
de Souza, J. C. [1 ]
Hoefler, B. C. [1 ]
Bale, S. S. [1 ]
Kratchman, L. B. [1 ]
Zorn, A. [1 ]
Patterson, A. [1 ]
Kim, E. S. [1 ]
Petrie, T. A. [1 ]
Wiellette, E. L. [1 ]
Williams, C. [1 ]
Isenberg, B. C. [1 ]
Charest, J. L. [1 ]
机构
[1] Draper, 555 Technol Sq, Cambridge, MA 02139 USA
[2] Pfizer Inc, 1 Portland St, Cambridge, MA 02139 USA
[3] Boston Univ, Dept Mech Engn, 110 Cummington Mall, Boston, MA 02215 USA
基金
美国国家科学基金会;
关键词
BRAIN-BARRIER MODEL; WALL SHEAR-STRESS; IN-VITRO; A-CHIP; SYSTEMS BIOLOGY; OXYGEN CONTROL; STEM-CELLS; CULTURE; TIGHT; VIVO;
D O I
10.1039/d1lc00067e
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Drug development suffers from a lack of predictive and human-relevant in vitro models. Organ-on-chip (OOC) technology provides advanced culture capabilities to generate physiologically appropriate, human-based tissue in vitro, therefore providing a route to a predictive in vitro model. However, OOC technologies are often created at the expense of throughput, industry-standard form factors, and compatibility with state-of-the-art data collection tools. Here we present an OOC platform with advanced culture capabilities supporting a variety of human tissue models including liver, vascular, gastrointestinal, and kidney. The platform has 96 devices per industry standard plate and compatibility with contemporary high-throughput data collection tools. Specifically, we demonstrate programmable flow control over two physiologically relevant flow regimes: perfusion flow that enhances hepatic tissue function and high-shear stress flow that aligns endothelial monolayers. In addition, we integrate electrical sensors, demonstrating quantification of barrier function of primary gut colon tissue in real-time. We utilize optical access to the tissues to directly quantify renal active transport and oxygen consumption via integrated oxygen sensors. Finally, we leverage the compatibility and throughput of the platform to screen all 96 devices using high content screening (HCS) and evaluate gene expression using RNA sequencing (RNA-seq). By combining these capabilities in one platform, physiologically-relevant tissues can be generated and measured, accelerating optimization of an in vitro model, and ultimately increasing predictive accuracy of in vitro drug screening.
引用
收藏
页码:1454 / 1474
页数:21
相关论文
共 101 条
[1]   Human-on-a-chip design strategies and principles for physiologically based pharmacokinetics/pharmacodynamics modeling [J].
Abaci, Hasan Erbil ;
Shuler, Michael L. .
INTEGRATIVE BIOLOGY, 2015, 7 (04) :383-391
[2]   Recapitulating physiological and pathological shear stress and oxygen to model vasculature in health and disease [J].
Abaci, Hasan Erbil ;
Shen, Yu-I ;
Tan, Scott ;
Gerecht, Sharon .
SCIENTIFIC REPORTS, 2014, 4
[3]   Skin and hair on-a-chip: in vitro skin models versus ex vivo tissue maintenance with dynamic perfusion [J].
Atac, Beren ;
Wagner, Ilka ;
Horland, Reyk ;
Lauster, Roland ;
Marx, Uwe ;
Tonevitsky, Alexander G. ;
Azar, Reza P. ;
Lindner, Gerd .
LAB ON A CHIP, 2013, 13 (18) :3555-3561
[4]   Vascular remodeling is governed by a VEGFR3-dependent fluid shear stress set point [J].
Baeyens, Nicolas ;
Nicoli, Stefania ;
Coon, Brian G. ;
Ross, Tyler D. ;
Van den Dries, Koen ;
Han, Jinah ;
Lauridsen, Holly M. ;
Mejean, Cecile O. ;
Eichmann, Anne ;
Thomas, Jean-Leon ;
Humphrey, Jay D. ;
Schwartz, Martin A. .
ELIFE, 2015, 4 :1-35
[5]   A thermoplastic microfluidic microphysiological system to recapitulate hepatic function and multicellular interactions [J].
Bale, Shyam Sundhar ;
Manoppo, Andrea ;
Thompson, Rebecca ;
Markoski, Alex ;
Coppeta, Jonathan ;
Cain, Brian ;
Haroutunian, Nerses ;
Newlin, Veronica ;
Spencer, Abbie ;
Azizgolshani, Hesham ;
Lu, Mingjian ;
Gosset, James ;
Keegan, Philip ;
Charest, Joseph L. .
BIOTECHNOLOGY AND BIOENGINEERING, 2019, 116 (12) :3409-3420
[6]   Organ-on-Chip Recapitulates Thrombosis Induced by an anti-CD154 Monoclonal Antibody: Translational Potential of Advanced Microengineered Systems [J].
Barrile, Riccardo ;
van der Meer, Andries D. ;
Park, Hyoungshin ;
Fraser, Jacob P. ;
Simic, Damir ;
Teng, Fang ;
Conegliano, David ;
Justin Nguyen ;
Jain, Abhishek ;
Zhou, Mimi ;
Karalis, Katia ;
Ingber, Donald E. ;
Hamilton, Geraldine A. ;
Otieno, Monicah A. .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2018, 104 (06) :1240-1248
[7]   Real-time monitoring of metabolic function in liver-on-chip microdevices tracks the dynamics of mitochondrial dysfunction [J].
Bavli, Danny ;
Prill, Sebastian ;
Ezra, Elishai ;
Levy, Gahl ;
Cohen, Merav ;
Vinken, Mathieu ;
Vanfleteren, Jan ;
Jaeger, Magnus ;
Nahmias, Yaakov .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (16) :E2231-E2240
[8]   Development of a Gut-on-a-Chip Model for High Throughput Disease Modeling and Drug Discovery [J].
Beaurivage, Claudia ;
Naumovska, Elena ;
Chang, Yee Xiang ;
Elstak, Edo D. ;
Nicolas, Arnaud ;
Wouters, Heidi ;
van Moolenbroek, Guido ;
Lanz, Henriette L. ;
Trietsch, Sebastiaan J. ;
Joore, Jos ;
Vulto, Paul ;
Janssen, Richard A. J. ;
Erdmann, Kai S. ;
Stallen, Jan ;
Kurek, Dorota .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (22)
[9]   Effect of cell-cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells [J].
Bhatia, SN ;
Balis, UJ ;
Yarmush, ML ;
Toner, M .
FASEB JOURNAL, 1999, 13 (14) :1883-1900
[10]  
Bielawski KS, 2016, TISSUE ENG PART C-ME, V22, P932, DOI [10.1089/ten.tec.2016.0257, 10.1089/ten.TEC.2016.0257]