GeSn on Insulators (GeSnOI) Toward Mid-infrared Integrated Photonics

被引:120
作者
Wang, Xiaoxin [1 ]
Covian, Alejandra Cuervo [1 ]
Je, Lisa [1 ]
Fu, Sidan [1 ]
Li, Haofeng [1 ]
Piao, James [1 ,2 ]
Liu, Jifeng [1 ]
机构
[1] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA
[2] Epitaxial Lab Inc, Syracuse, NY USA
基金
美国国家科学基金会;
关键词
GeSn; direct band gap; crystallization; photonic integration; mid-infrared; optical gain; photodetector; AMORPHOUS LAYERS; TEMPERATURE; GROWTH; PHOTODIODES; PHOTODETECTORS; GAP;
D O I
10.3389/fphy.2019.00134
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In recent years, Ge and Ge1-xSnx materials and devices have achieved rapid progress in integrated photonics. However, conventional heteroepitaxy of active photonic devices compromises the area on Si for CMOS electronics, limiting the scale of integration. Furthermore, it is not possible to grow GeSn epitaxially on amorphous and/or flexible substrates toward 3D photonic integration in mid-infrared (MIR) regime. Here, we present low-temperature crystallization of direct bandgap, high crystallinity Ge1-xSnx (0.08 < x < 0.26) on amorphous dielectrics insulators (GeSnOI) toward 3D and flexibleMIR integrated photonics. Utilizing eutectically-enhanced crystallization (EEC), an extraordinarily large average grain size of similar to 100 mu m has been achieved in blanket GeSn films crystallized on SiO2 layers, flexible glass, and polyimide substrates alike. Furthermore, using Sn nanodot enhanced composition enhancement (NICE), we have achieved an average Sn composition as high as 26 at.% to further extend the optical response of GeSn toward. = 3-5 mu m. The achieved Sn composition of 8-26 at.% far exceeds that of the equilibrium solubility limit of < 1 at.%, even though the crystallization temperature of 350-450 degrees C far exceeds the typical epitaxial growth temperature of GeSn. This result indicates that crystallization from amorphous GeSn (a-GeSn) may offer better metastability compared to direct epitaxial growth of GeSn. Attesting to the high crystallinity, a peak optical gain of 2,900 cm(-1) with a lifetime approaching 0.1 ns is achieved at lambda = 2,200-2,350 nm at 300 K. The gain lifetime is on the same order as epitaxial GeSn, and it is > 100x longer than the direct gap transition in Ge, confirming the indirect-to-direct band gap transition in GeSn at similar to 9 at. Sn composition. Moreover, a prototype p-GeSn/n-Si photodiode from a-GeSn crystallization achieves 100 mA/W responsivity at lambda = 2,050 nm and T = 300 K, approaching the level of some commercial PbS detectors. The device also demonstrates photovoltaic behavior and a low dark current density of 1 mA/cm(2) at -1 V reverse bias, comparable to epitaxial Ge/Si photodiodes. These results indicate that crystallization of GeSnOI offers a promising solution for active devices toward 3D MIR photonic integration and/or MIR photonics on flexible substrates.
引用
收藏
页数:15
相关论文
共 57 条
[1]   An optically pumped 2.5 μm GeSn laser on Si operating at 110 K [J].
Al-Kabi, Sattar ;
Ghetmiri, Seyed Amir ;
Margetis, Joe ;
Pham, Thach ;
Zhou, Yiyin ;
Dou, Wei ;
Collier, Bria ;
Quinde, Randy ;
Du, Wei ;
Mosleh, Aboozar ;
Liu, Jifeng ;
Sun, Greg ;
Soref, Richard A. ;
Tolle, John ;
Li, Baohua ;
Mortazavi, Mansour ;
Naseem, Hameed A. ;
Yu, Shui-Qing .
APPLIED PHYSICS LETTERS, 2016, 109 (17)
[2]  
[Anonymous], 2019, CORNINGS FLEXIBLE WI
[3]   Ge-Sn semiconductors for band-gap and lattice engineering [J].
Bauer, M ;
Taraci, J ;
Tolle, J ;
Chizmeshya, AVG ;
Zollner, S ;
Smith, DJ ;
Menendez, J ;
Hu, CW ;
Kouvetakis, J .
APPLIED PHYSICS LETTERS, 2002, 81 (16) :2992-2994
[4]   Process flow innovations for photonic device integration in CMOS [J].
Beals, Mark ;
Michel, J. ;
Liu, J. F. ;
Ahn, D. H. ;
Sparacin, D. ;
Sun, R. ;
Hong, C. Y. ;
Kimerling, L. C. ;
Pomerene, A. ;
Carothers, D. ;
Beattie, J. ;
Kopa, A. ;
Apsel, A. ;
Rasras, M. S. ;
Gill, D. M. ;
Patel, S. S. ;
Tu, K. Y. ;
Chen, Y. K. ;
White, A. E. .
SILICON PHOTONICS III, 2008, 6898
[5]   Lattice constant and substitutional composition of GeSn alloys grown by molecular beam epitaxy [J].
Bhargava, Nupur ;
Coppinger, Matthew ;
Gupta, Jay Prakash ;
Wielunski, Leszek ;
Kolodzey, James .
APPLIED PHYSICS LETTERS, 2013, 103 (04)
[6]   Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm [J].
Bristow, Alan D. ;
Rotenberg, Nir ;
van Driel, Henry M. .
APPLIED PHYSICS LETTERS, 2007, 90 (19)
[7]   EFFECT OF TEMPERATURE ON PROPERTIES OF GAAS LASER [J].
BURNS, G ;
DILL, FH ;
NATHAN, MI .
PROCEEDINGS OF THE IEEE, 1963, 51 (06) :947-&
[8]   Increased photoluminescence of strain-reduced, high-Sn composition Ge1-xSnx alloys grown by molecular beam epitaxy [J].
Chen, Robert ;
Lin, Hai ;
Huo, Yijie ;
Hitzman, Charles ;
Kamins, Theodore I. ;
Harris, James S. .
APPLIED PHYSICS LETTERS, 2011, 99 (18)
[9]  
Chuang S.L., 1995, Wiley Series in Pure and Applied Optics, V22
[10]   Measurement and modeling of ultrafast carrier dynamics and transport in germanium/silicon-germanium quantum wells [J].
Claussen, Stephanie A. ;
Tasyurek, Emel ;
Roth, Jonathan E. ;
Miller, David A. B. .
OPTICS EXPRESS, 2010, 18 (25) :25596-25607